HotSpot虚拟机提供了种类繁多的垃圾收集器,选择太多反而令人踌躇难决,若只挑最先进的显然 不可能满足全部应用场景,但只用一句“必须因地制宜,按需选用”又未免有敷衍的嫌疑,本节我们就 来探讨一下如何选择合适的垃圾收集器。

3.7.1 Epsilon收集器

在G1、Shenandoah或者ZGC这些越来越复杂、越来越先进的垃圾收集器相继出现的同时,也有一个“反其道而行”的新垃圾收集器出现在JDK 11的特征清单中——Epsilon,这是一款以不能够进行垃圾收集为“卖点”的垃圾收集器,这种话听起来第一感觉就十分违反逻辑,这种“不干活”的收集器要它何用?

在实际生产环境中,不能进行垃圾收集的Epsilon也仍有用武之地。很长一段时间以来,Java技术体系的发展重心都在面向长时间、大规模的企业级应用和服务端应用,尽管也有移动平台(指Java ME而不是Android)和桌面平台的支持,但使用热度上与前者相比要逊色不少。可是近年来大型系统从传统单体应用向微服务化、无服务化方向发展的趋势已越发明显,Java在这方面比起Golang等后起之秀来确实有一些先天不足,使用率正渐渐下降。传统Java有着内存占用较大,在容器中启动时间长,即时编译需要缓慢优化等特点,这对大型应用来说并不是什么太大的问题,但对短时间、小规模的服务形式就有诸多不适。为了应对新的技术潮流,最近几个版本的JDK逐渐加入了提前编译、面向应用的类数据共享等支持。Epsilon也是有着类似的目标,如果读者的应用只要运行数分钟甚至数秒, 只要Java虚拟机能正确分配内存,在堆耗尽之前就会退出,那显然运行负载极小、没有任何回收行为的Epsilon便是很恰当的选择。

HotSpot虚拟机中的各种垃圾收集器到此全部介绍完毕,在描述过程中提到了很多虚拟机非稳定的运行参数,下面表3-4中整理了这些参数,供读者实践时参考。
表3-4 垃圾收集相关的常用参数

image-20210916203734409

image-20210916203751067

大对象就是指需要大量连续内存空间的Java对象,最典型的大对象便是那种很长的字符串,或者元素数量很庞大的数组,本节例子中的byte[]数组就是典型的大对象。大对象对虚拟机的内存分配来说就是一个不折不扣的坏消息,比遇到一个大对象更加坏的消息就是遇到一群“朝生夕灭”的“短命大对象”,我们写程序的时候应注意避免。在Java虚拟机中要避免大对象的原因是,在分配空间时,它容易导致内存明明还有不少空间时就提前触发垃圾收集,以获取足够的连续空间才能安置好它们,而当复制对象时,大对象就意味着高额的内存复制开销。HotSpot虚拟机提供了-XX:PretenureSizeThreshold 参数,指定大于该设置值的对象直接在老年代分配,这样做的目的就是避免在Eden区及两个Survivor区之间来回复制,产生大量的内存复制操作。

执行代码清单3-8中的testPretenureSizeThreshold()方法后,我们看到Eden空间几乎没有被使用,而老年代的10MB空间被使用了40%,也就是4MB的allocation对象直接就分配在老年代中,这是因为- XX:PretenureSizeThreshold被设置为3MB(就是3145728,这个参数不能与-Xmx之类的参数一样直接写3MB),因此超过3MB的对象都会直接在老年代进行分配。

注意 -XX:PretenureSizeThreshold参数只对Serial和ParNew两款新生代收集器有效,HotSpot 的其他新生代收集器,如Parallel Scavenge并不支持这个参数。如果必须使用此参数进行调优,可考虑ParNew加CMS的收集器组合。

代码清单3-8 大对象直接进入老年代

1
2
3
4
5
6
7
8
9
10
private static final int _1MB = 1024 * 1024;

/**
* VM参数:-verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8
* -XX:PretenureSizeThreshold=3145728
*/
public static void testPretenureSizeThreshold() {
byte[] allocation;
allocation = new byte[4 * _1MB]; //直接分配在老年代中
}

运行结果:

1
2
3
4
5
6
7
8
9
10
Heap
def new generation total 9216K, used 671K [0x029d0000, 0x033d0000, 0x033d0000)
eden space 8192K, 8% used [0x029d0000, 0x02a77e98, 0x031d0000)
from space 1024K, 0% used [0x031d0000, 0x031d0000, 0x032d0000)
to space 1024K, 0% used [0x032d0000, 0x032d0000, 0x033d0000)
tenured generation total 10240K, used 4096K [0x033d0000, 0x03dd0000, 0x03dd0000)
the space 10240K, 40% used [0x033d0000, 0x037d0010, 0x037d0200, 0x03dd0000)
compacting perm gen total 12288K, used 2107K [0x03dd0000, 0x049d0000, 0x07dd0000)
the space 12288K, 17% used [0x03dd0000, 0x03fdefd0, 0x03fdf000, 0x049d0000)
No shared spaces configured.

大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。

HotSpot虚拟机提供了-XX:+PrintGCDetails这个收集器日志参数,告诉虚拟机在发生垃圾收集行为时打印内存回收日志,并且在进程退出的时候输出当前的内存各区域分配情况。在实际的问题排查中,收集器日志常会打印到文件后通过工具进行分析,不过本节实验的日志并不多,直接阅读就能看得很清楚。

在代码清单3-7的testAllocation()方法中,尝试分配三个2MB大小和一个4MB大小的对象,在运行时通过-Xms20M、-Xmx20M、-Xmn10M这三个参数限制了Java堆大小为20MB,不可扩展,其中10MB分配给新生代,剩下的10MB分配给老年代。-XX:Survivor-Ratio=8决定了新生代中Eden区与一个Survivor区的空间比例是8∶1,从输出的结果也清晰地看到“eden space 8192K、from space 1024K、to space 1024K”的信息,新生代总可用空间为9216KB(Eden区+1个Survivor区的总容量)。

执行testAllocation()中分配allocation4对象的语句时会发生一次Minor GC,这次回收的结果是新生代6651KB变为148KB,而总内存占用量则几乎没有减少(因为allocation1、2、3三个对象都是存活的,虚拟机几乎没有找到可回收的对象)。产生这次垃圾收集的原因是为allocation4分配内存时,发现Eden已经被占用了6MB,剩余空间已不足以分配allocation4所需的4MB内存,因此发生Minor GC。垃圾收集期间虚拟机又发现已有的三个2MB大小的对象全部无法放入Survivor空间(Survivor空间只有1MB大小),所以只好通过分配担保机制提前转移到老年代去。

这次收集结束后,4MB的allocation4对象顺利分配在Eden中。因此程序执行完的结果是Eden占用4MB(被allocation4占用),Survivor空闲,老年代被占用6MB(被allocation1、2、3占用)。通过GC 日志可以证实这一点。

代码清单3-7 新生代Minor GC

1
2
3
4
5
6
7
8
9
10
11
12
private static final int _1MB = 1024 * 1024;

/**
* VM参数:-verbose:gc -Xms20M -Xmx20M -Xmn10M -XX:+PrintGCDetails -XX:SurvivorRatio=8
*/
public static void testAllocation() {
byte[] allocation1, allocation2, allocation3, allocation4;
allocation1 = new byte[2 * _1MB];
allocation2 = new byte[2 * _1MB];
allocation3 = new byte[2 * _1MB];
allocation4 = new byte[4 * _1MB]; // 出现一次Minor GC
}

运行结果:

1
2
3
4
5
6
7
8
9
10
11
[GC [DefNew: 6651K->148K(9216K), 0.0070106 secs] 6651K->6292K(19456K), 0.0070426 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]
Heap
def new generation total 9216K, used 4326K [0x029d0000, 0x033d0000, 0x033d0000)
eden space 8192K, 51% used [0x029d0000, 0x02de4828, 0x031d0000)
from space 1024K, 14% used [0x032d0000, 0x032f5370, 0x033d0000)
to space 1024K, 0% used [0x031d0000, 0x031d0000, 0x032d0000)
tenured generation total 10240K, used 6144K [0x033d0000, 0x03dd0000, 0x03dd0000)
the space 10240K, 60% used [0x033d0000, 0x039d0030, 0x039d0200, 0x03dd0000)
compacting perm gen total 12288K, used 2114K [0x03dd0000, 0x049d0000, 0x07dd0000)
the space 12288K, 17% used [0x03dd0000, 0x03fe0998, 0x03fe0a00, 0x049d0000)
No shared spaces configured.

Java技术体系的自动内存管理,最根本的目标是自动化地解决两个问题:自动给对象分配内存以及自动回收分配给对象的内存。关于回收内存这方面,笔者已经使用了大量篇幅去介绍虚拟机中的垃圾收集器体系以及运作原理,现在我们来探讨一下关于给对象分配内存的那些事儿。

对象的内存分配,从概念上讲,应该都是在堆上分配(而实际上也有可能经过即时编译后被拆散为标量类型并间接地在栈上分配^1)。在经典分代的设计下,新生对象通常会分配在新生代中,少数情况下(例如对象大小超过一定阈值)也可能会直接分配在老年代。对象分配的规则并不是固定的, 《Java虚拟机规范》并未规定新对象的创建和存储细节,这取决于虚拟机当前使用的是哪一种垃圾收集器,以及虚拟机中与内存相关的参数的设定。

接下来的几小节内容,笔者将会讲解若干最基本的内存分配原则,并通过代码去验证这些原则。 本节出现的代码如无特别说明,均使用HotSpot虚拟机,以客户端模式运行。由于并未指定收集器组合,因此,本节验证的实际是使用Serial加Serial Old客户端默认收集器组合下的内存分配和回收的策略,这种配置和收集器组合也许是开发人员做研发时的默认组合(其实现在研发时很多也默认用服务端虚拟机了),但在生产环境中一般不会这样用,所以大家主要去学习的是分析方法,而列举的分配规则反而只是次要的。读者也不妨根据自己项目中使用的收集器编写一些程序去实践验证一下使用其他几种收集器的内存分配规则。

ZGC(“Z”并非什么专业名词的缩写,这款收集器的名字就叫作Z Garbage Collector)是一款在JDK 11中新加入的具有实验性质[^1]的低延迟垃圾收集器,是由Oracle公司研发的。2018年Oracle创建了JEP 333将ZGC提交给OpenJDK,推动其进入OpenJDK 11的发布清单之中。

ZGC和Shenandoah的目标是高度相似的,都希望在尽可能对吞吐量影响不太大的前提下[^2],实现在任意堆内存大小下都可以把垃圾收集的停顿时间限制在十毫秒以内的低延迟。但是ZGC和Shenandoah的实现思路又是差异显著的,如果说RedHat公司开发的Shen-andoah像是Oracle的G1收集器的实际继承者的话,那Oracle公司开发的ZGC就更像是Azul System公司独步天下的PGC(Pauseless GC)和C4(Concurrent Continuously CompactingCollector)收集器的同胞兄弟。

早在2005年,运行在Azul VM上的PGC就已经实现了标记和整理阶段都全程与用户线程并发运行的垃圾收集,而运行在Zing VM上的C4收集器是PGC继续演进的产物,主要增加了分代收集支持,大幅提升了收集器能够承受的对象分配速度。无论从算法还是实现原理上来讲,PGC和C4肯定算是一脉相承的,而ZGC虽然并非Azul公司的产品,但也应视为这条脉络上的另一个节点,因为ZGC几乎所有的关键技术上,与PGC和C4都只存在术语称谓上的差别,实质内容几乎是一模一样的。相信到这里读者应该已经对Java虚拟机收集器常见的专业术语都有所了解了,如果不避讳专业术语的话,我们可以给ZGC下一个这样的定义来概括它的主要特征:ZGC收集器是一款基于Region内存布局的,(暂时) 不设分代的,使用了读屏障、染色指针和内存多重映射等技术来实现可并发的标记-整理算法的,以低延迟为首要目标的一款垃圾收集器。接下来,笔者将逐项来介绍ZGC的这些技术特点。

首先从ZGC的内存布局说起。与Shenandoah和G1一样,ZGC也采用基于Region的堆内存布局,但与它们不同的是,ZGC的Region(在一些官方资料中将它称为Page或者ZPage,本章为行文一致继续称为Region)具有动态性——动态创建和销毁,以及动态的区域容量大小。在x64硬件平台下,ZGC的Region可以具有如图3-19所示的大、中、小三类容量:

  • 小型Region(Small Region):容量固定为2MB,用于放置小于256KB的小对象。
  • 中型Region(Medium Region):容量固定为32MB,用于放置大于等于256KB但小于4MB的对象。
  • 大型Region(Large Region):容量不固定,可以动态变化,但必须为2MB的整数倍,用于放置4MB或以上的大对象。每个大型Region中只会存放一个大对象,这也预示着虽然名字叫作“大型Region”,但它的实际容量完全有可能小于中型Region,最小容量可低至4MB。大型Region在ZGC的实现中是不会被重分配(重分配是ZGC的一种处理动作,用于复制对象的收集器阶段,稍后会介绍到) 的,因为复制一个大对象的代价非常高昂

image-20210916201143410
图3-19 ZGC的堆内存布局

接下来是ZGC的核心问题——并发整理算法的实现。Shenandoah使用转发指针和读屏障来实现并发整理,ZGC虽然同样用到了读屏障,但用的却是一条与Shenandoah完全不同,更加复杂精巧的解题思路。

ZGC收集器有一个标志性的设计是它采用的染色指针技术(Colored Pointer,其他类似的技术中可能将它称为Tag Pointer或者Version Pointer)。从前,如果我们要在对象上存储一些额外的、只供收集器或者虚拟机本身使用的数据,通常会在对象头中增加额外的存储字段(详见2.3.2节的内容),如对象的哈希码、分代年龄、锁记录等就是这样存储的。这种记录方式在有对象访问的场景下是很自然流畅的,不会有什么额外负担。但如果对象存在被移动过的可能性,即不能保证对象访问能够成功呢? 又或者有一些根本就不会去访问对象,但又希望得知该对象的某些信息的应用场景呢?能不能从指针或者与对象内存无关的地方得到这些信息,譬如是否能够看出来对象被移动过?这样的要求并非不合理的刁难,先不去说并发移动对象可能带来的可访问性问题,此前我们就遇到过这样的要求——追踪式收集算法的标记阶段就可能存在只跟指针打交道而不必涉及指针所引用的对象本身的场景。例如对象标记的过程中需要给对象打上三色标记(见3.4.6节),这些标记本质上就只和对象的引用有关,而与对象本身无关——某个对象只有它的引用关系能决定它存活与否,对象上其他所有的属性都不能够影响它的存活判定结果。HotSpot虚拟机的几种收集器有不同的标记实现方案,有的把标记直接记录在对象头上(如Serial收集器),有的把标记记录在与对象相互独立的数据结构上(如G1、Shenandoah使用了一种相当于堆内存的1/64大小的,称为BitMap的结构来记录标记信息),而ZGC的染色指针是最直接的、最纯粹的,它直接把标记信息记在引用对象的指针上,这时,与其说可达性分析是遍历对象图来标记对象,还不如说是遍历“引用图”来标记“引用”了。

染色指针是一种直接将少量额外的信息存储在指针上的技术,可是为什么指针本身也可以存储额外信息呢?在64位系统中,理论可以访问的内存高达16EB(2的64次幂)字节[^3]。实际上,基于需求 (用不到那么多内存)、性能(地址越宽在做地址转换时需要的页表级数越多)和成本(消耗更多晶体管)的考虑,在AMD64架构[^4]中只支持到52位(4PB)的地址总线和48位(256TB)的虚拟地址空间,所以目前64位的硬件实际能够支持的最大内存只有256TB。此外,操作系统一侧也还会施加自己的约束,64位的Linux则分别支持47位(128TB)的进程虚拟地址空间和46位(64TB)的物理地址空间,64位的Windows系统甚至只支持44位(16TB)的物理地址空间。

尽管Linux下64位指针的高18位不能用来寻址,但剩余的46位指针所能支持的64TB内存在今天仍然能够充分满足大型服务器的需要。鉴于此,ZGC的染色指针技术继续盯上了这剩下的46位指针宽度,将其高4位提取出来存储四个标志信息。通过这些标志位,虚拟机可以直接从指针中看到其引用对象的三色标记状态、是否进入了重分配集(即被移动过)、是否只能通过finalize()方法才能被访问到,如图3-20所示。当然,由于这些标志位进一步压缩了原本就只有46位的地址空间,也直接导致ZGC能够管理的内存不可以超过4TB(2的42次幂)[^5]。

image-20210916201315547

图3-20 染色指针示意[^6]

虽然染色指针有4TB的内存限制,不能支持32位平台,不能支持压缩指针(-XX: +UseCompressedOops)等诸多约束,但它带来的收益也是非常可观的,在JEP 333的描述页[^7]中, ZGC的设计者Per Liden在“描述”小节里花了全文过半的篇幅来陈述染色指针的三大优势:

  • 染色指针可以使得一旦某个Region的存活对象被移走之后,这个Region立即就能够被释放和重用掉,而不必等待整个堆中所有指向该Region的引用都被修正后才能清理。这点相比起Shenandoah是一个颇大的优势,使得理论上只要还有一个空闲Region,ZGC就能完成收集,而Shenandoah需要等到引用更新阶段结束以后才能释放回收集中的Region,这意味着堆中几乎所有对象都存活的极端情况,需要1∶1复制对象到新Region的话,就必须要有一半的空闲Region来完成收集。至于为什么染色指针能够导致这样的结果,笔者将在后续解释其“自愈”特性的时候进行解释。
  • 染色指针可以大幅减少在垃圾收集过程中内存屏障的使用数量,设置内存屏障,尤其是写屏障的目的通常是为了记录对象引用的变动情况,如果将这些信息直接维护在指针中,显然就可以省去一些专门的记录操作。实际上,到目前为止ZGC都并未使用任何写屏障,只使用了读屏障(一部分是染色指针的功劳,一部分是ZGC现在还不支持分代收集,天然就没有跨代引用的问题)。内存屏障对程序运行时性能的损耗在前面章节中已经讲解过,能够省去一部分的内存屏障,显然对程序运行效率是大有裨益的,所以ZGC对吞吐量的影响也相对较低。
  • 染色指针可以作为一种可扩展的存储结构用来记录更多与对象标记、重定位过程相关的数据,以便日后进一步提高性能。现在Linux下的64位指针还有前18位并未使用,它们虽然不能用来寻址,却可以通过其他手段用于信息记录。如果开发了这18位,既可以腾出已用的4个标志位,将ZGC可支持的最大堆内存从4TB拓展到64TB,也可以利用其余位置再存储更多的标志,譬如存储一些追踪信息来让垃圾收集器在移动对象时能将低频次使用的对象移动到不常访问的内存区域。

不过,要顺利应用染色指针有一个必须解决的前置问题:Java虚拟机作为一个普普通通的进程, 这样随意重新定义内存中某些指针的其中几位,操作系统是否支持?处理器是否支持?这是很现实的问题,无论中间过程如何,程序代码最终都要转换为机器指令流交付给处理器去执行,处理器可不会管指令流中的指针哪部分存的是标志位,哪部分才是真正的寻址地址,只会把整个指针都视作一个内存地址来对待。这个问题在Solaris/SPARC平台上比较容易解决,因为SPARC硬件层面本身就支持虚拟地址掩码,设置之后其机器指令直接就可以忽略掉染色指针中的标志位。但在x86-64平台上并没有提供类似的黑科技,ZGC设计者就只能采取其他的补救措施了,这里面的解决方案要涉及虚拟内存映射技术,让我们先来复习一下这个x86计算机体系中的经典设计。

在远古时代的x86计算机系统里面,所有进程都是共用同一块物理内存空间的,这样会导致不同进程之间的内存无法相互隔离,当一个进程污染了别的进程内存后,就只能对整个系统进行复位后才能得以恢复。为了解决这个问题,从Intel 80386处理器开始,提供了“保护模式”用于隔离进程。在保护模式下,386处理器的全部32条地址寻址线都有效,进程可访问最高也可达4GB的内存空间,但此时已不同于之前实模式下的物理内存寻址了,处理器会使用分页管理机制把线性地址空间和物理地址空间分别划分为大小相同的块,这样的内存块被称为“页”(Page)。通过在线性虚拟空间的页与物理地址空间的页之间建立的映射表,分页管理机制会进行线性地址到物理地址空间的映射,完成线性地址到物理地址的转换[^8]。如果读者对计算机结构体系了解不多的话,不妨设想这样一个场景来类比:假如你要去“中山一路3号”这个地址拜访一位朋友,根据你所处城市的不同,譬如在广州或者在上海,是能够通过这个“相同的地址”定位到两个完全独立的物理位置的,这时地址与物理位置是一对多关系映射。

不同层次的虚拟内存到物理内存的转换关系可以在硬件层面、操作系统层面或者软件进程层面实现,如何完成地址转换,是一对一、多对一还是一对多的映射,也可以根据实际需要来设计。 Linux/x86-64平台上的ZGC使用了多重映射(Multi-Mapping)将多个不同的虚拟内存地址映射到同一个物理内存地址上,这是一种多对一映射,意味着ZGC在虚拟内存中看到的地址空间要比实际的堆内存容量来得更大。把染色指针中的标志位看作是地址的分段符,那只要将这些不同的地址段都映射到同一个物理内存空间,经过多重映射转换后,就可以使用染色指针正常进行寻址了,效果如图3-21所示。

image-20210916201504543
图3-21 多重映射下的寻址

在某些场景下,多重映射技术确实可能会带来一些诸如复制大对象时会更容易这样的额外好处, 可从根源上讲,ZGC的多重映射只是它采用染色指针技术的伴生产物,并不是专门为了实现其他某种特性需求而去做的。

接下来,我们来学习ZGC收集器是如何工作的。ZGC的运作过程大致可划分为以下四个大的阶段。全部四个阶段都是可以并发执行的,仅是两个阶段中间会存在短暂的停顿小阶段,这些小阶段, 譬如初始化GC Root直接关联对象的Mark Start,与之前G1和Shenandoah的Initial Mark阶段并没有什么差异,笔者就不再单独解释了。ZGC的运作过程具体如图3-22所示。

image-20210916201547199

图3-22 ZGC运作过程

  • 并发标记(Concurrent Mark):与G1、Shenandoah一样,并发标记是遍历对象图做可达性分析的阶段,前后也要经过类似于G1、Shenandoah的初始标记、最终标记(尽管ZGC中的名字不叫这些)的短暂停顿,而且这些停顿阶段所做的事情在目标上也是相类似的。与G1、Shenandoah不同的是,ZGC 的标记是在指针上而不是在对象上进行的,标记阶段会更新染色指针中的Marked 0、Marked 1标志位。
  • 并发预备重分配(Concurrent Prepare for Relocate):这个阶段需要根据特定的查询条件统计得出本次收集过程要清理哪些Region,将这些Region组成重分配集(Relocation Set)。重分配集与G1收集器的回收集(Collection Set)还是有区别的,ZGC划分Region的目的并非为了像G1那样做收益优先的增量回收。相反,ZGC每次回收都会扫描所有的Region,用范围更大的扫描成本换取省去G1中记忆集的维护成本。因此,ZGC的重分配集只是决定了里面的存活对象会被重新复制到其他的Region中,里面的Region会被释放,而并不能说回收行为就只是针对这个集合里面的Region进行,因为标记过程是针对全堆的。此外,在JDK 12的ZGC中开始支持的类卸载以及弱引用的处理,也是在这个阶段中完成的。
  • 并发重分配(Concurrent Relocate):重分配是ZGC执行过程中的核心阶段,这个过程要把重分配集中的存活对象复制到新的Region上,并为重分配集中的每个Region维护一个转发表(Forward Table),记录从旧对象到新对象的转向关系。得益于染色指针的支持,ZGC收集器能仅从引用上就明确得知一个对象是否处于重分配集之中,如果用户线程此时并发访问了位于重分配集中的对象,这次访问将会被预置的内存屏障所截获,然后立即根据Region上的转发表记录将访问转发到新复制的对象上,并同时修正更新该引用的值,使其直接指向新对象,ZGC将这种行为称为指针的“自愈”(Self- Healing)能力。这样做的好处是只有第一次访问旧对象会陷入转发,也就是只慢一次,对比Shenandoah的Brooks转发指针,那是每次对象访问都必须付出的固定开销,简单地说就是每次都慢, 因此ZGC对用户程序的运行时负载要比Shenandoah来得更低一些。还有另外一个直接的好处是由于染色指针的存在,一旦重分配集中某个Region的存活对象都复制完毕后,这个Region就可以立即释放用于新对象的分配(但是转发表还得留着不能释放掉),哪怕堆中还有很多指向这个对象的未更新指针也没有关系,这些旧指针一旦被使用,它们都是可以自愈的。
  • 并发重映射(Concurrent Remap):重映射所做的就是修正整个堆中指向重分配集中旧对象的所有引用,这一点从目标角度看是与Shenandoah并发引用更新阶段一样的,但是ZGC的并发重映射并不是一个必须要“迫切”去完成的任务,因为前面说过,即使是旧引用,它也是可以自愈的,最多只是第一次使用时多一次转发和修正操作。重映射清理这些旧引用的主要目的是为了不变慢(还有清理结束后可以释放转发表这样的附带收益),所以说这并不是很“迫切”。因此,ZGC很巧妙地把并发重映射阶段要做的工作,合并到了下一次垃圾收集循环中的并发标记阶段里去完成,反正它们都是要遍历所有对象的,这样合并就节省了一次遍历对象图[^9]的开销。一旦所有指针都被修正之后,原来记录新旧对象关系的转发表就可以释放掉了。

ZGC的设计理念与Azul System公司的PGC和C4收集器一脉相承[^10],是迄今垃圾收集器研究的最前沿成果,它与Shenandoah一样做到了几乎整个收集过程都全程可并发,短暂停顿也只与GC Roots大小相关而与堆内存大小无关,因而同样实现了任何堆上停顿都小于十毫秒的目标。

相比G1、Shenandoah等先进的垃圾收集器,ZGC在实现细节上做了一些不同的权衡选择,譬如G1 需要通过写屏障来维护记忆集,才能处理跨代指针,得以实现Region的增量回收。记忆集要占用大量的内存空间,写屏障也对正常程序运行造成额外负担,这些都是权衡选择的代价。ZGC就完全没有使用记忆集,它甚至连分代都没有,连像CMS中那样只记录新生代和老年代间引用的卡表也不需要,因而完全没有用到写屏障,所以给用户线程带来的运行负担也要小得多。可是,必定要有优有劣才会称作权衡,ZGC的这种选择[^11]也限制了它能承受的对象分配速率不会太高,可以想象以下场景来理解ZGC的这个劣势:ZGC准备要对一个很大的堆做一次完整的并发收集,假设其全过程要持续十分钟以上(请读者切勿混淆并发时间与停顿时间,ZGC立的Flag是停顿时间不超过十毫秒),在这段时间里面,由于应用的对象分配速率很高,将创造大量的新对象,这些新对象很难进入当次收集的标记范围,通常就只能全部当作存活对象来看待——尽管其中绝大部分对象都是朝生夕灭的,这就产生了大量的浮动垃圾。如果这种高速分配持续维持的话,每一次完整的并发收集周期都会很长,回收到的内存空间持续小于期间并发产生的浮动垃圾所占的空间,堆中剩余可腾挪的空间就越来越小了。目前唯一的办法就是尽可能地增加堆容量大小,获得更多喘息的时间。但是若要从根本上提升ZGC能够应对的对象分配速率,还是需要引入分代收集,让新生对象都在一个专门的区域中创建,然后专门针对这个区域进行更频繁、更快的收集。Azul的C4收集器实现了分代收集后,能够应对的对象分配速率就比不分代的PGC收集器提升了十倍之多。

ZGC还有一个常在技术资料上被提及的优点是支持“NUMA-Aware”的内存分配。NUMA(Non- Uniform Memory Access,非统一内存访问架构)是一种为多处理器或者多核处理器的计算机所设计的内存架构。由于摩尔定律逐渐失效,现代处理器因频率发展受限转而向多核方向发展,以前原本在北桥芯片中的内存控制器也被集成到了处理器内核中,这样每个处理器核心所在的裸晶(DIE)[^12]都有属于自己内存管理器所管理的内存,如果要访问被其他处理器核心管理的内存,就必须通过Inter- Connect通道来完成,这要比访问处理器的本地内存慢得多。在NUMA架构下,ZGC收集器会优先尝试在请求线程当前所处的处理器的本地内存上分配对象,以保证高效内存访问。在ZGC之前的收集器就只有针对吞吐量设计的Parallel Scavenge支持NUMA内存分配[^13],如今ZGC也成为另外一个选择。

在性能方面,尽管目前还处于实验状态,还没有完成所有特性,稳定性打磨和性能调优也仍在进行,但即使是这种状态下的ZGC,其性能表现已经相当亮眼,从官方给出的测试结果[^14]来看,用“令人震惊的、革命性的ZGC”来形容都不为过。

图3-23和图3-24是ZGC与Parallel Scavenge、G1三款收集器通过SPECjbb 2015[^15]的测试结果。在ZGC的“弱项”吞吐量方面,以低延迟为首要目标的ZGC已经达到了以高吞吐量为目标Parallel Scavenge 的99%,直接超越了G1。如果将吞吐量测试设定为面向SLA(Service Level Agreements)应用的“Critical Throughput”的话[^16],ZGC的表现甚至还反超了Parallel Scavenge收集器。

而在ZGC的强项停顿时间测试上,它就毫不留情地与Parallel Scavenge、G1拉开了两个数量级的差距。不论是平均停顿,还是95%停顿、99%停顿、99.9%停顿,抑或是最大停顿时间,ZGC均能毫不费劲地控制在十毫秒之内,以至于把它和另外两款停顿数百近千毫秒的收集器放到一起对比,就几乎显示不了ZGC的柱状条(图3-24a),必须把结果的纵坐标从线性尺度调整成对数尺度(图3-24b,纵坐标轴的尺度是对数增长的)才能观察到ZGC的测试结果。

image-20210916201824443

图3-23 ZGC的吞吐量测试

image-20210916201846792

图3-24 ZGC的停顿时间测试

ZGC原本是Oracle作为一项商业特性(如同JFR、JMC这些功能)来设计和实现的,只不过在它横空出世的JDK 11时期,正好适逢Oracle调整许可证授权,把所有商业特性都开源给了OpenJDK(详情见第1章Java发展史),所以用户对其商业性并没有明显的感知。ZGC有着令所有开发人员趋之若鹜的优秀性能,让以前大多数人只是听说,但从未用过的“Azul式的垃圾收集器”一下子飞入寻常百姓家, 笔者相信它完全成熟之后,将会成为服务端、大内存、低延迟应用的首选收集器的有力竞争者。

[^1]: 这里的“实验性质”特指ZGC目前尚未具备全部商用收集器应有的特征,如暂不提供全平台的支持 (目前仅支持Linux/x86-64),暂不支持类卸载(JDK 11时不支持,JDK 12的ZGC已经支持),暂不支持新的Graal编译器配合工作等,但这些局限主要是人力资源与工作量上的限制,可能读者在阅读到这部分内容的时候已经有了新的变化。
[^2]: 在JEP 333中把ZGC的“吞吐量下降不大”明确量化为相比起使用G1收集器,吞吐量下降不超过15%。不过根据Oracle公开的现阶段SPECjbb 2015测试结果来看,ZGC在这方面要比Shenandoah优秀得多,测得的吞吐量居然比G1还高,甚至已经接近了Parallel Scavenge的成绩。
[^3]: 1EB=1024PB,1PB=1024TB。
[^4]: AMD64这个名字的意思不是指只有AMD的处理器使用,它就是现在主流的x86-64架构,由于Intel Itanium的失败,现行的64位标准是由AMD公司率先制定的,Intel通过交叉授权获得该标准的授权,所以叫作AMD64。
[^5]: JDK 13计划是要扩展到最大支持16TB的,本章撰写时JDK 13尚未正式发布,还没有明确可靠的信息,所以这里按照ZGC目前的状态来介绍。
[^6]: 此图片以及后续关于ZGC执行阶段的几张图片,均来自Per Liden在Jfokus VM 2018大会上的演讲: 《The Z Garbage Collector:Low Latency GC for OpenJDK》。
[^7]: 页面地址:https://openjdk.java.net/jeps/333。
[^8]: 实际上现代的x86操作系统中的虚拟地址是操作系统加硬件两级翻译的,在进程中访问的逻辑地址要通过MMU中的分段单元翻译为线性地址,然后再通过分页单元翻译成物理地址。这部分并非本书所关注的话题,读者简单了解即可。
[^9]: 如果不是由于两个阶段合并考虑,其实做重映射不需要按照对象图的顺序去做,只需线性地扫描整个堆来清理旧引用即可。
[^10]: 笔者心中的词语其实是“一模一样”,只是这怎么听起来似乎像是对Oracle的嘲讽?Oracle公司也并未在任何公开资料中承认参考过Azul System的论文或者实现。
[^11]: 根据Per Liden的解释,目前ZGC不分代完全是从节省工作量角度所做出的选择,并非单纯技术上的权衡。来源:https://www.zhihu.com/question/287945354/answer/458761494。
[^12]: 裸晶这个名字用的较少,通常都直接称呼为DIE: https://en.wikipedia.org/wiki/Die_(integrated_circuit)。
[^13]: 当“JEP 345:NUMA-Aware Memory Allocation for G1”被纳入某个版本的JDK发布范围后,G1也会支持NUMA分配。
[^14]: 数据来自Jfokus VM 2018中Per liden的演讲《The Z Garbage Collector:Low Latency GC for OpenJDK》。
[^15]: http://spec.org/jbb2015/。
[^16]: Critical Throughput就是要求最大延迟不超过某个设置值(10毫秒到100毫秒)下测得的吞吐量。

在本书所出现的众多垃圾收集器里,Shenandoah大概是最“孤独”的一个。现代社会竞争激烈,连一个公司里不同团队之间都存在“部门墙”,那Shenandoah作为第一款不由Oracle(包括以前的Sun)公司的虚拟机团队所领导开发的HotSpot垃圾收集器,不可避免地会受到一些来自“官方”的排挤。在笔者撰写这部分内容时[^1],Oracle仍明确拒绝在OracleJDK 12中支持Shenandoah收集器,并执意在打包OracleJDK时通过条件编译完全排除掉了Shenandoah的代码,换句话说,Shenandoah是一款只有OpenJDK才会包含,而OracleJDK里反而不存在的收集器,“免费开源版”比“收费商业版”功能更多,这是相对罕见的状况[^2]。如果读者的项目要求用到Oracle商业支持的话,就不得不把Shenandoah排除在选择范围之外了。

最初Shenandoah是由RedHat公司独立发展的新型收集器项目,在2014年RedHat把Shenandoah贡献给了OpenJDK,并推动它成为OpenJDK 12的正式特性之一,也就是后来的JEP 189。这个项目的目标是实现一种能在任何堆内存大小下都可以把垃圾收集的停顿时间限制在十毫秒以内的垃圾收集器,该目标意味着相比CMS和G1,Shenandoah不仅要进行并发的垃圾标记,还要并发地进行对象清理后的整理动作。

从代码历史渊源上讲,比起稍后要介绍的有着Oracle正朔血统的ZGC,Shenandoah反而更像是G1 的下一代继承者,它们两者有着相似的堆内存布局,在初始标记、并发标记等许多阶段的处理思路上都高度一致,甚至还直接共享了一部分实现代码,这使得部分对G1的打磨改进和Bug修改会同时反映在Shenandoah之上,而由于Shenandoah加入所带来的一些新特性,也有部分会出现在G1收集器中,譬如在并发失败后作为“逃生门”的Full GC[^3],G1就是由于合并了Shenandoah的代码才获得多线程Full GC的支持。

那Shenandoah相比起G1又有什么改进呢?虽然Shenandoah也是使用基于Region的堆内存布局,同样有着用于存放大对象的Humongous Region,默认的回收策略也同样是优先处理回收价值最大的Region……但在管理堆内存方面,它与G1至少有三个明显的不同之处,最重要的当然是支持并发的整理算法,G1的回收阶段是可以多线程并行的,但却不能与用户线程并发,这点作为Shenandoah最核心的功能稍后笔者会着重讲解。其次,Shenandoah(目前)是默认不使用分代收集的,换言之,不会有专门的新生代Region或者老年代Region的存在,没有实现分代,并不是说分代对Shenandoah没有价值, 这更多是出于性价比的权衡,基于工作量上的考虑而将其放到优先级较低的位置上。最后, Shenandoah摒弃了在G1中耗费大量内存和计算资源去维护的记忆集,改用名为“连接矩阵”(Connection Matrix)的全局数据结构来记录跨Region的引用关系,降低了处理跨代指针时的记忆集维护消耗,也降低了伪共享问题(见3.4.4节)的发生概率。连接矩阵可以简单理解为一张二维表格,如果Region N有对象指向Region M,就在表格的N行M列中打上一个标记,如图3-15所示,如果Region 5中的对象Baz 引用了Region 3的Foo,Foo又引用了Region 1的Bar,那连接矩阵中的5行3列、3行1列就应该被打上标记。在回收时通过这张表格就可以得出哪些Region之间产生了跨代引用。

Shenandoah收集器的工作过程大致可以划分为以下九个阶段(此处以Shenandoah在2016年发表的原始论文[^4]进行介绍。在最新版本的Shenandoah 2.0中,进一步强化了“部分收集”的特性,初始标记之前还有Initial Partial、Concurrent Partial和Final Partial阶段,它们可以不太严谨地理解为对应于以前分代收集中的Minor GC的工作):

image-20210916200330974

图3-15 Shenandoah收集器的连接矩阵示意图

  • 初始标记(Initial Marking):与G1一样,首先标记与GC Roots直接关联的对象,这个阶段仍是“Stop The World”的,但停顿时间与堆大小无关,只与GC Roots的数量相关。
  • 并发标记(Concurrent Marking):与G1一样,遍历对象图,标记出全部可达的对象,这个阶段是与用户线程一起并发的,时间长短取决于堆中存活对象的数量以及对象图的结构复杂程度。
  • 最终标记(Final Marking):与G1一样,处理剩余的SATB扫描,并在这个阶段统计出回收价值最高的Region,将这些Region构成一组回收集(Collection Set)。最终标记阶段也会有一小段短暂的停顿。
  • 并发清理(Concurrent Cleanup):这个阶段用于清理那些整个区域内连一个存活对象都没有找到的Region(这类Region被称为Immediate Garbage Region)。
  • 并发回收(Concurrent Evacuation):并发回收阶段是Shenandoah与之前HotSpot中其他收集器的核心差异。在这个阶段,Shenandoah要把回收集里面的存活对象先复制一份到其他未被使用的Region之中。复制对象这件事情如果将用户线程冻结起来再做那是相当简单的,但如果两者必须要同时并发进行的话,就变得复杂起来了。其困难点是在移动对象的同时,用户线程仍然可能不停对被移动的对象进行读写访问,移动对象是一次性的行为,但移动之后整个内存中所有指向该对象的引用都还是旧对象的地址,这是很难一瞬间全部改变过来的。对于并发回收阶段遇到的这些困难,Shenandoah将会通过读屏障和被称为“Brooks Pointers”的转发指针来解决(讲解完Shenandoah整个工作过程之后笔者还要再回头介绍它)。并发回收阶段运行的时间长短取决于回收集的大小。
  • 初始引用更新(Initial Update Reference):并发回收阶段复制对象结束后,还需要把堆中所有指向旧对象的引用修正到复制后的新地址,这个操作称为引用更新。引用更新的初始化阶段实际上并未做什么具体的处理,设立这个阶段只是为了建立一个线程集合点,确保所有并发回收阶段中进行的收集器线程都已完成分配给它们的对象移动任务而已。初始引用更新时间很短,会产生一个非常短暂的停顿。
  • 并发引用更新(Concurrent Update Reference):真正开始进行引用更新操作,这个阶段是与用户线程一起并发的,时间长短取决于内存中涉及的引用数量的多少。并发引用更新与并发标记不同,它不再需要沿着对象图来搜索,只需要按照内存物理地址的顺序,线性地搜索出引用类型,把旧值改为新值即可。
  • 最终引用更新(Final Update Reference):解决了堆中的引用更新后,还要修正存在于GC Roots 中的引用。这个阶段是Shenandoah的最后一次停顿,停顿时间只与GC Roots的数量相关。
  • 并发清理(Concurrent Cleanup):经过并发回收和引用更新之后,整个回收集中所有的Region已再无存活对象,这些Region都变成Immediate Garbage Regions了,最后再调用一次并发清理过程来回收这些Region的内存空间,供以后新对象分配使用。

以上对Shenandoah收集器这九个阶段的工作过程的描述可能拆分得略为琐碎,读者只要抓住其中三个最重要的并发阶段(并发标记、并发回收、并发引用更新),就能比较容易理清Shenandoah是如何运作的了。图3-16[^5]中黄色的区域代表的是被选入回收集的Region,绿色部分就代表还存活的对象,蓝色就是用户线程可以用来分配对象的内存Region了。图3-16中不仅展示了Shenandoah三个并发阶段的工作过程,还能形象地表示出并发标记阶段如何找出回收对象确定回收集,并发回收阶段如何移动回收集中的存活对象,并发引用更新阶段如何将指向回收集中存活对象的所有引用全部修正,此后回收集便不存在任何引用可达的存活对象了。

image-20210916200516881

图3-16 Shenandoah收集器的工作过程

学习了Shenandoah收集器的工作过程,我们再来聊一下Shenandoah用以支持并行整理的核心概念——Brooks Pointer。“Brooks”是一个人的名字。1984年,Rodney A.Brooks在论文《Trading Data Space for Reduced Time and Code Space in Real-Time Garbage Collection on Stock Hardware》中提出了使用转发指针(Forwarding Pointer,也常被称为Indirection Pointer)来实现对象移动与用户程序并发的一种解决方案。此前,要做类似的并发操作,通常是在被移动对象原有的内存上设置保护陷阱(Memory Protection Trap),一旦用户程序访问到归属于旧对象的内存空间就会产生自陷中段,进入预设好的异常处理器中,再由其中的代码逻辑把访问转发到复制后的新对象上。虽然确实能够实现对象移动与用户线程并发,但是如果没有操作系统层面的直接支持,这种方案将导致用户态频繁切换到核心态[^6], 代价是非常大的,不能频繁使用[^7]。

image-20210916200556276

图3-17 Brooks Pointers示意图(一)

Brooks提出的新方案不需要用到内存保护陷阱,而是在原有对象布局结构的最前面统一增加一个新的引用字段,在正常不处于并发移动的情况下,该引用指向对象自己,如图3-17所示。

从结构上来看,Brooks提出的转发指针与某些早期Java虚拟机使用过的句柄定位(关于对象定位详见第2章)有一些相似之处,两者都是一种间接性的对象访问方式,差别是句柄通常会统一存储在专门的句柄池中,而转发指针是分散存放在每一个对象头前面。

有了转发指针之后,有何收益暂且不论,所有间接对象访问技术的缺点都是相同的,也是非常显著的——每次对象访问会带来一次额外的转向开销,尽管这个开销已经被优化到只有一行汇编指令的程度,譬如以下所示:

1
mov r13,QWORD PTR [r12+r14*8-0x8]

不过,毕竟对象定位会被频繁使用到,这仍是一笔不可忽视的执行成本,只是它比起内存保护陷阱的方案已经好了很多。转发指针加入后带来的收益自然是当对象拥有了一份新的副本时,只需要修改一处指针的值,即旧对象上转发指针的引用位置,使其指向新对象,便可将所有对该对象的访问转发到新的副本上。这样只要旧对象的内存仍然存在,未被清理掉,虚拟机内存中所有通过旧引用地址访问的代码便仍然可用,都会被自动转发到新对象上继续工作,如图3-18所示。

1)收集器线程复制了新的对象副本;
2)用户线程更新对象的某个字段;
3)收集器线程更新转发指针的引用值为新副本地址。

如果不做任何保护措施,让事件2在事件1、事件3之间发生的话,将导致的结果就是用户线程对对象的变更发生在旧对象上,所以这里必须针对转发指针的访问操作采取同步措施,让收集器线程或者
用户线程对转发指针的访问只有其中之一能够成功,另外一个必须等待,避免两者交替进行。实际上Shenandoah收集器是通过比较并交换(Compare And Swap,CAS)操作[^8]来保证并发时对象的访问正确性的。

转发指针另一点必须注意的是执行频率的问题,尽管通过对象头上的Brooks Pointer来保证并发时原对象与复制对象的访问一致性,这件事情只从原理上看是不复杂的,但是“对象访问”这四个字的分量是非常重的,对于一门面向对象的编程语言来说,对象的读取、写入,对象的比较,为对象哈希值计算,用对象加锁等,这些操作都属于对象访问的范畴,它们在代码中比比皆是,要覆盖全部对象访问操作,Shenandoah不得不同时设置读、写屏障去拦截。

之前介绍其他收集器时,或者是用于维护卡表,或者是用于实现并发标记,写屏障已被使用多次,累积了不少的处理任务了,这些写屏障有相当一部分在Shenandoah收集器中依然要被使用到。除此以外,为了实现Brooks Pointer,Shenandoah在读、写屏障中都加入了额外的转发处理,尤其是使用读屏障的代价,这是比写屏障更大的。代码里对象读取的出现频率要比对象写入的频率高出很多,读屏障数量自然也要比写屏障多得多,所以读屏障的使用必须更加谨慎,不允许任何的重量级操作。 Shenandoah是本书中第一款使用到读屏障的收集器,它的开发者也意识到数量庞大的读屏障带来的性能开销会是Shenandoah被诟病的关键点之一[^9],所以计划在JDK 13中将Shenandoah的内存屏障模型改进为基于引用访问屏障(Load Reference Barrier)[^10]的实现,所谓“引用访问屏障”是指内存屏障只拦截对象中数据类型为引用类型的读写操作,而不去管原生数据类型等其他非引用字段的读写,这能够省去大量对原生类型、对象比较、对象加锁等场景中设置内存屏障所带来的消耗。

最后来谈谈Shenandoah在实际应用中的性能表现,Shenandoah的开发团队或者其他第三方测试者在网上都公布了一系列测试,结果各有差异。笔者在此选择展示了一份RedHat官方在2016年所发表的Shenandoah实现论文中给出的应用实测数据,测试内容是使用ElasticSearch对200GB的维基百科数据进行索引[^11],如表3-2所示。从结果来看,应该说2016年做该测试时的Shenandoah并没有完全达成预定目标,停顿时间比其他几款收集器确实有了质的飞跃,但也并未实现最大停顿时间控制在十毫秒以内的目标,而吞吐量方面则出现了很明显的下降,其总运行时间是所有测试收集器中最长的。读者可以从这个官方的测试结果来对Shenandoah的弱项(高运行负担使得吞吐量下降)和强项(低延迟时间) 建立量化的概念,并对比一下稍后介绍的ZGC的测试结果。

表3-2 Shenandoah在实际应用中的测试数据

[^1]: 这部分内容的撰写时间是2019年5月,以后的版本中双方博弈可能存在变数。相关内容可参见: https://bugs.openjdk.java.net/browse/JDK-8215030。
[^2]: 这里主要是调侃,OpenJDK和OracleJDK之间的关系并不仅仅是收费和免费的问题,详情可参见本书第1章。
[^3]: JEP 307:Parallel Full GC for G1。
[^4]: 论文地址:https://www.researchgate.net/publication/306112816_Shenandoah_An_open- source_concurrent_compacting_garbage_collector_for_OpenJDK。
[^5]: 此例子中的图片引用了Aleksey Shipilev在DEVOXX 2017上的主题演讲:《Shenandoah GC Part I: The Garbage Collector That Could》,地址为https://shipilev.net/talks/devoxx-Nov2017-shenandoah.pdf。因本书是黑白印刷,颜色可能难以分辨,读者可以下载原文查看。
[^6]: 用户态、核心态是一种操作系统内核模式,具体见:https://zh.wikipedia.org/wiki/核心态。
[^7]: 但如果能有来自操作系统内核的支持的话,就不是没有办法解决,业界公认最优秀的Azul C4收集器就使用了这种方案。
[^8]: 关于临界区、锁、CAS等概念,是计算机体系的基础知识,如果读者对此不了解的话,可以参考第13章中的相关介绍。
[^9]: Roman Kennke(JEP 189的Owner):It resolves one major point of criticism against Shenandoah,that is their expensive primitive read-barriers。
[^10]: 资料来源:https://rkennke.wordpress.com/2019/05/15/shenandoah-gc-in-jdk13-part-i-load-reference- barriers/。
[^11]: 该论文是以2014~2015年间最初版本的Shenandoah为测试对象,在2017年,Christine Flood在Java- One的演讲中,进行了相同测试,Shenandoah的运行时间已经优化到335秒。相信在读者阅读到这段文字时,Shenandoah的实际表现在多数应用中均会优于结果中反映的水平。

HotSpot的垃圾收集器从Serial发展到CMS再到G1,经历了逾二十年时间,经过了数百上千万台服务器上的应用实践,已经被淬炼得相当成熟了,不过它们距离“完美”还是很遥远。怎样的收集器才算是“完美”呢?这听起来像是一道主观题,其实不然,完美难以实现,但是我们确实可以把它客观描述出来。

衡量垃圾收集器的三项最重要的指标是:内存占用(Footprint)、吞吐量(Throughput)和延迟 (Latency),三者共同构成了一个“不可能三角^1”。三者总体的表现会随技术进步而越来越好,但是要在这三个方面同时具有卓越表现的“完美”收集器是极其困难甚至是不可能的,一款优秀的收集器通常最多可以同时达成其中的两项。

在内存占用、吞吐量和延迟这三项指标里,延迟的重要性日益凸显,越发备受关注。其原因是随着计算机硬件的发展、性能的提升,我们越来越能容忍收集器多占用一点点内存;硬件性能增长,对软件系统的处理能力是有直接助益的,硬件的规格和性能越高,也有助于降低收集器运行时对应用程序的影响,换句话说,吞吐量会更高。但对延迟则不是这样,硬件规格提升,准确地说是内存的扩大,对延迟反而会带来负面的效果,这点也是很符合直观思维的:虚拟机要回收完整的1TB的堆内存,毫无疑问要比回收1GB的堆内存耗费更多时间。由此,我们就不难理解为何延迟会成为垃圾收集器最被重视的性能指标了。现在我们来观察一下现在已接触过的垃圾收集器的停顿状况,如图3-14所示。

图3-14中浅色阶段表示必须挂起用户线程,深色表示收集器线程与用户线程是并发工作的。由图3-14可见,在CMS和G1之前的全部收集器,其工作的所有步骤都会产生“Stop The World”式的停顿; CMS和G1分别使用增量更新和原始快照(见3.4.6节)技术,实现了标记阶段的并发,不会因管理的堆内存变大,要标记的对象变多而导致停顿时间随之增长。但是对于标记阶段之后的处理,仍未得到妥善解决。CMS使用标记-清除算法,虽然避免了整理阶段收集器带来的停顿,但是清除算法不论如何优化改进,在设计原理上避免不了空间碎片的产生,随着空间碎片不断淤积最终依然逃不过“Stop The World”的命运。G1虽然可以按更小的粒度进行回收,从而抑制整理阶段出现时间过长的停顿,但毕竟也还是要暂停的。

image-20210916200029113

图3-14 各款收集器的并发情况

读者肯定也从图3-14中注意到了,最后的两款收集器,Shenandoah和ZGC,几乎整个工作过程全部都是并发的,只有初始标记、最终标记这些阶段有短暂的停顿,这部分停顿的时间基本上是固定的,与堆的容量、堆中对象的数量没有正比例关系。实际上,它们都可以在任意可管理的(譬如现在ZGC只能管理4TB以内的堆)堆容量下,实现垃圾收集的停顿都不超过十毫秒这种以前听起来是天方夜谭、匪夷所思的目标。这两款目前仍处于实验状态的收集器,被官方命名为“低延迟垃圾收集器”(Low-Latency Garbage Collector或者Low-Pause-Time Garbage Collector)。

Garbage First(简称G1)收集器是垃圾收集器技术发展历史上的里程碑式的成果,它开创了收集器面向局部收集的设计思路和基于Region的内存布局形式。早在JDK 7刚刚确立项目目标、Oracle公司制定的JDK 7 RoadMap里面,G1收集器就被视作JDK 7中HotSpot虚拟机的一项重要进化特征。从JDK 6 Update 14开始就有Early Access版本的G1收集器供开发人员实验和试用,但由此开始G1收集器的“实验状态”(Experimental)持续了数年时间,直至JDK 7 Update 4,Oracle才认为它达到足够成熟的商用程度,移除了“Experimental”的标识;到了JDK 8 Update 40的时候,G1提供并发的类卸载的支持,补全了其计划功能的最后一块拼图。这个版本以后的G1收集器才被Oracle官方称为“全功能的垃圾收集器”(Fully-Featured Garbage Collector)。

G1是一款主要面向服务端应用的垃圾收集器。HotSpot开发团队最初赋予它的期望是(在比较长期的)未来可以替换掉JDK 5中发布的CMS收集器。现在这个期望目标已经实现过半了,JDK 9发布之日,G1宣告取代Parallel Scavenge加Parallel Old组合,成为服务端模式下的默认垃圾收集器,而CMS则沦落至被声明为不推荐使用(Deprecate)的收集器[^1]。如果对JDK 9及以上版本的HotSpot虚拟机使用参数-XX:+UseConcMarkSweepGC来开启CMS收集器的话,用户会收到一个警告信息,提示CMS未来将会被废弃:

1
Java HotSpot(TM) 64-Bit Server VM warning: Option UseConcMarkSweepGC was deprecated in version 9.0 and will likely be removed in a future release.

但作为一款曾被广泛运用过的收集器,经过多个版本的开发迭代后,CMS(以及之前几款收集器)的代码与HotSpot的内存管理、执行、编译、监控等子系统都有千丝万缕的联系,这是历史原因导致的,并不符合职责分离的设计原则。为此,规划JDK 10功能目标时,HotSpot虚拟机提出了“统一垃圾收集器接口”[^2],将内存回收的“行为”与“实现”进行分离,CMS以及其他收集器都重构成基于这套接口的一种实现。以此为基础,日后要移除或者加入某一款收集器,都会变得容易许多,风险也可以控制,这算是在为CMS退出历史舞台铺下最后的道路了。

作为CMS收集器的替代者和继承人,设计者们希望做出一款能够建立起“停顿时间模型”(Pause Prediction Model)的收集器,停顿时间模型的意思是能够支持指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间大概率不超过N毫秒这样的目标,这几乎已经是实时Java(RTSJ)的中软实时垃圾收集器特征了。

那具体要怎么做才能实现这个目标呢?首先要有一个思想上的改变,在G1收集器出现之前的所有其他收集器,包括CMS在内,垃圾收集的目标范围要么是整个新生代(Minor GC),要么就是整个老年代(Major GC),再要么就是整个Java堆(Full GC)。而G1跳出了这个樊笼,它可以面向堆内存任何部分来组成回收集(Collection Set,一般简称CSet)进行回收,衡量标准不再是它属于哪个分代,而是哪块内存中存放的垃圾数量最多,回收收益最大,这就是G1收集器的Mixed GC模式。

G1开创的基于Region的堆内存布局是它能够实现这个目标的关键。虽然G1也仍是遵循分代收集理论设计的,但其堆内存的布局与其他收集器有非常明显的差异:G1不再坚持固定大小以及固定数量的分代区域划分,而是把连续的Java堆划分为多个大小相等的独立区域(Region),每一个Region都可以根据需要,扮演新生代的Eden空间、Survivor空间,或者老年代空间。收集器能够对扮演不同角色的Region采用不同的策略去处理,这样无论是新创建的对象还是已经存活了一段时间、熬过多次收集的旧对象都能获取很好的收集效果。

Region中还有一类特殊的Humongous区域,专门用来存储大对象。G1认为只要大小超过了一个Region容量一半的对象即可判定为大对象。每个Region的大小可以通过参数-XX:G1HeapRegionSize设定,取值范围为1MB~32MB,且应为2的N次幂。而对于那些超过了整个Region容量的超级大对象, 将会被存放在N个连续的Humongous Region之中,G1的大多数行为都把Humongous Region作为老年代的一部分来进行看待,如图3-12所示。

虽然G1仍然保留新生代和老年代的概念,但新生代和老年代不再是固定的了,它们都是一系列区域(不需要连续)的动态集合。G1收集器之所以能建立可预测的停顿时间模型,是因为它将Region作为单次回收的最小单元,即每次收集到的内存空间都是Region大小的整数倍,这样可以有计划地避免在整个Java堆中进行全区域的垃圾收集。更具体的处理思路是让G1收集器去跟踪各个Region里面的垃圾堆积的“价值”大小,价值即回收所获得的空间大小以及回收所需时间的经验值,然后在后台维护一个优先级列表,每次根据用户设定允许的收集停顿时间(使用参数-XX:MaxGCPauseMillis指定,默认值是200毫秒),优先处理回收价值收益最大的那些Region,这也就是“Garbage First”名字的由来。 这种使用Region划分内存空间,以及具有优先级的区域回收方式,保证了G1收集器在有限的时间内获取尽可能高的收集效率。

image-20210916174722131

图3-12 G1收集器Region分区示意图[^3]

G1将堆内存“化整为零”的“解题思路”,看起来似乎没有太多令人惊讶之处,也完全不难理解,但其中的实现细节可是远远没有想象中那么简单,否则就不会从2004年Sun实验室发表第一篇关于G1的论文后一直拖到2012年4月JDK 7 Update 4发布,用将近10年时间才倒腾出能够商用的G1收集器来。 G1收集器至少有(不限于)以下这些关键的细节问题需要妥善解决:

  • 譬如,将Java堆分成多个独立Region后,Region里面存在的跨Region引用对象如何解决?解决的思路我们已经知道(见3.3.1节和3.4.4节):使用记忆集避免全堆作为GC Roots扫描,但在G1收集器上记忆集的应用其实要复杂很多,它的每个Region都维护有自己的记忆集,这些记忆集会记录下别的Region 指向自己的指针,并标记这些指针分别在哪些卡页的范围之内。G1的记忆集在存储结构的本质上是一种哈希表,Key是别的Region的起始地址,Value是一个集合,里面存储的元素是卡表的索引号。这种“双向”的卡表结构(卡表是“我指向谁”,这种结构还记录了“谁指向我”)比原来的卡表实现起来更复杂,同时由于Region数量比传统收集器的分代数量明显要多得多,因此G1收集器要比其他的传统垃圾收集器有着更高的内存占用负担。根据经验,G1至少要耗费大约相当于Java堆容量10%至20%的额外内存来维持收集器工作。
  • 譬如,在并发标记阶段如何保证收集线程与用户线程互不干扰地运行?这里首先要解决的是用户线程改变对象引用关系时,必须保证其不能打破原本的对象图结构,导致标记结果出现错误,该问题的解决办法笔者已经抽出独立小节来讲解过(见3.4.6节):CMS收集器采用增量更新算法实现,而G1 收集器则是通过原始快照(SATB)算法来实现的。此外,垃圾收集对用户线程的影响还体现在回收过程中新创建对象的内存分配上,程序要继续运行就肯定会持续有新对象被创建,G1为每一个Region设计了两个名为TAMS(Top at Mark Start)的指针,把Region中的一部分空间划分出来用于并发回收过程中的新对象分配,并发回收时新分配的对象地址都必须要在这两个指针位置以上。G1收集器默认在这个地址以上的对象是被隐式标记过的,即默认它们是存活的,不纳入回收范围。与CMS中的“Concurrent Mode Failure”失败会导致Full GC类似,如果内存回收的速度赶不上内存分配的速度, G1收集器也要被迫冻结用户线程执行,导致Full GC而产生长时间“Stop The World”。
  • 譬如,怎样建立起可靠的停顿预测模型?用户通过-XX:MaxGCPauseMillis参数指定的停顿时间只意味着垃圾收集发生之前的期望值,但G1收集器要怎么做才能满足用户的期望呢?G1收集器的停顿预测模型是以衰减均值(Decaying Average)为理论基础来实现的,在垃圾收集过程中,G1收集器会记录每个Region的回收耗时、每个Region记忆集里的脏卡数量等各个可测量的步骤花费的成本,并分析得出平均值、标准偏差、置信度等统计信息。这里强调的“衰减平均值”是指它会比普通的平均值更容易受到新数据的影响,平均值代表整体平均状态,但衰减平均值更准确地代表“最近的”平均状态。换句话说,Region的统计状态越新越能决定其回收的价值。然后通过这些信息预测现在开始回收的话,由哪些Region组成回收集才可以在不超过期望停顿时间的约束下获得最高的收益。

如果我们不去计算用户线程运行过程中的动作(如使用写屏障维护记忆集的操作),G1收集器的运作过程大致可划分为以下四个步骤:

  • 初始标记(Initial Marking):仅仅只是标记一下GC Roots能直接关联到的对象,并且修改TAMS 指针的值,让下一阶段用户线程并发运行时,能正确地在可用的Region中分配新对象。这个阶段需要停顿线程,但耗时很短,而且是借用进行Minor GC的时候同步完成的,所以G1收集器在这个阶段实际并没有额外的停顿。
  • 并发标记(Concurrent Marking):从GC Root开始对堆中对象进行可达性分析,递归扫描整个堆里的对象图,找出要回收的对象,这阶段耗时较长,但可与用户程序并发执行。当对象图扫描完成以后,还要重新处理SATB记录下的在并发时有引用变动的对象。
  • 最终标记(Final Marking):对用户线程做另一个短暂的暂停,用于处理并发阶段结束后仍遗留下来的最后那少量的SATB记录。
  • 筛选回收(Live Data Counting and Evacuation):负责更新Region的统计数据,对各个Region的回收价值和成本进行排序,根据用户所期望的停顿时间来制定回收计划,可以自由选择任意多个Region 构成回收集,然后把决定回收的那一部分Region的存活对象复制到空的Region中,再清理掉整个旧Region的全部空间。这里的操作涉及存活对象的移动,是必须暂停用户线程,由多条收集器线程并行完成的。

从上述阶段的描述可以看出,G1收集器除了并发标记外,其余阶段也是要完全暂停用户线程的, 换言之,它并非纯粹地追求低延迟,官方给它设定的目标是在延迟可控的情况下获得尽可能高的吞吐量,所以才能担当起“全功能收集器”的重任与期望[^4]。

从Oracle官方透露出来的信息可获知,回收阶段(Evacuation)其实本也有想过设计成与用户程序一起并发执行,但这件事情做起来比较复杂,考虑到G1只是回收一部分Region,停顿时间是用户可控制的,所以并不迫切去实现,而选择把这个特性放到了G1之后出现的低延迟垃圾收集器(即ZGC) 中。另外,还考虑到G1不是仅仅面向低延迟,停顿用户线程能够最大幅度提高垃圾收集效率,为了保证吞吐量所以才选择了完全暂停用户线程的实现方案。通过图3-13可以比较清楚地看到G1收集器的运作步骤中并发和需要停顿的阶段。

image-20210916174956224

图3-13 G1收集器运行示意图

毫无疑问,可以由用户指定期望的停顿时间是G1收集器很强大的一个功能,设置不同的期望停顿时间,可使得G1在不同应用场景中取得关注吞吐量和关注延迟之间的最佳平衡。不过,这里设置的“期望值”必须是符合实际的,不能异想天开,毕竟G1是要冻结用户线程来复制对象的,这个停顿时间再怎么低也得有个限度。它默认的停顿目标为两百毫秒,一般来说,回收阶段占到几十到一百甚至接近两百毫秒都很正常,但如果我们把停顿时间调得非常低,譬如设置为二十毫秒,很可能出现的结果就是由于停顿目标时间太短,导致每次选出来的回收集只占堆内存很小的一部分,收集器收集的速度逐渐跟不上分配器分配的速度,导致垃圾慢慢堆积。很可能一开始收集器还能从空闲的堆内存中获得一些喘息的时间,但应用运行时间一长就不行了,最终占满堆引发Full GC反而降低性能,所以通常把期望停顿时间设置为一两百毫秒或者两三百毫秒会是比较合理的。

从G1开始,最先进的垃圾收集器的设计导向都不约而同地变为追求能够应付应用的内存分配速率 (Allocation Rate),而不追求一次把整个Java堆全部清理干净。这样,应用在分配,同时收集器在收集,只要收集的速度能跟得上对象分配的速度,那一切就能运作得很完美。这种新的收集器设计思路从工程实现上看是从G1开始兴起的,所以说G1是收集器技术发展的一个里程碑。

G1收集器常会被拿来与CMS收集器互相比较,毕竟它们都非常关注停顿时间的控制,官方资料 [^5]中将它们两个并称为“The Mostly Concurrent Collectors”。在未来,G1收集器最终还是要取代CMS 的,而当下它们两者并存的时间里,分个高低优劣就无可避免。

相比CMS,G1的优点有很多,暂且不论可以指定最大停顿时间、分Region的内存布局、按收益动态确定回收集这些创新性设计带来的红利,单从最传统的算法理论上看,G1也更有发展潜力。与CMS 的“标记-清除”算法不同,G1从整体来看是基于“标记-整理”算法实现的收集器,但从局部(两个Region 之间)上看又是基于“标记-复制”算法实现,无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,垃圾收集完成之后能提供规整的可用内存。这种特性有利于程序长时间运行,在程序为大对象分配内存时不容易因无法找到连续内存空间而提前触发下一次收集。

不过,G1相对于CMS仍然不是占全方位、压倒性优势的,从它出现几年仍不能在所有应用场景中代替CMS就可以得知这个结论。比起CMS,G1的弱项也可以列举出不少,如在用户程序运行过程中,G1无论是为了垃圾收集产生的内存占用(Footprint)还是程序运行时的额外执行负载 (Overload)都要比CMS要高。

就内存占用来说,虽然G1和CMS都使用卡表来处理跨代指针,但G1的卡表实现更为复杂,而且堆中每个Region,无论扮演的是新生代还是老年代角色,都必须有一份卡表,这导致G1的记忆集(和其他内存消耗)可能会占整个堆容量的20%乃至更多的内存空间;相比起来CMS的卡表就相当简单, 只有唯一一份,而且只需要处理老年代到新生代的引用,反过来则不需要,由于新生代的对象具有朝生夕灭的不稳定性,引用变化频繁,能省下这个区域的维护开销是很划算的[^6]。

在执行负载的角度上,同样由于两个收集器各自的细节实现特点导致了用户程序运行时的负载会有不同,譬如它们都使用到写屏障,CMS用写后屏障来更新维护卡表;而G1除了使用写后屏障来进行同样的(由于G1的卡表结构复杂,其实是更烦琐的)卡表维护操作外,为了实现原始快照搜索 (SATB)算法,还需要使用写前屏障来跟踪并发时的指针变化情况。相比起增量更新算法,原始快照搜索能够减少并发标记和重新标记阶段的消耗,避免CMS那样在最终标记阶段停顿时间过长的缺点, 但是在用户程序运行过程中确实会产生由跟踪引用变化带来的额外负担。由于G1对写屏障的复杂操作要比CMS消耗更多的运算资源,所以CMS的写屏障实现是直接的同步操作,而G1就不得不将其实现为类似于消息队列的结构,把写前屏障和写后屏障中要做的事情都放到队列里,然后再异步处理。

以上的优缺点对比仅仅是针对G1和CMS两款垃圾收集器单独某方面的实现细节的定性分析,通常我们说哪款收集器要更好、要好上多少,往往是针对具体场景才能做的定量比较。按照笔者的实践经验,目前在小内存应用上CMS的表现大概率仍然要会优于G1,而在大内存应用上G1则大多能发挥其优势,这个优劣势的Java堆容量平衡点通常在6GB至8GB之间,当然,以上这些也仅是经验之谈,不同应用需要量体裁衣地实际测试才能得出最合适的结论,随着HotSpot的开发者对G1的不断优化,也会让对比结果继续向G1倾斜。

[^1]: JEP 291:Deprecate the Concurrent Mark Sweep(CMS)Garbage Collector。
[^2]: JEP 304:Garbage Collector Interface。
[^3]: 图片来源:https://www.infoq.com/articles/G1-One-Garbage-Collector-To-Rule-Them-All。
[^4]: 原文是:It meets garbage collection pause time goals with a high probability,while achieving high throughput。
[^5]: 资料来源:https://docs.oracle.com/en/java/javase/11/gctuning/available-collectors.html。
[^6]: 代价就是当CMS发生Old GC时(所有收集器中只有CMS有针对老年代的Old GC),要把整个新生代作为GC Roots来进行扫描。

CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网网站或者基于浏览器的B/S系统的服务端上,这类应用通常都会较为关注服务的响应速度,希望系统停顿时间尽可能短,以给用户带来良好的交互体验。CMS收集器就非常符合这类应用的需求。

从名字(包含“Mark Sweep”)上就可以看出CMS收集器是基于标记-清除算法实现的,它的运作过程相对于前面几种收集器来说要更复杂一些,整个过程分为四个步骤,包括:
1)初始标记(CMS initial mark)
2)并发标记(CMS concurrent mark)
3)重新标记(CMS remark)
4)并发清除(CMS concurrent sweep)

其中初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快;并发标记阶段就是从GC Roots的直接关联对象开始遍历整个对象图的过程,这个过程耗时较长但是不需要停顿用户线程,可以与垃圾收集线程一起并发运行;而重新标记阶段则是为了修正并发标记期间,因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录(详见3.4.6节中关于增量更新的讲解),这个阶段的停顿时间通常会比初始标记阶段稍长一些,但也远比并发标记阶段的时间短;最后是并发清除阶段,清理删除掉标记阶段判断的已经死亡的对象,由于不需要移动存活对象,所以这个阶段也是可以与用户线程同时并发的。

由于在整个过程中耗时最长的并发标记和并发清除阶段中,垃圾收集器线程都可以与用户线程一起工作,所以从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。通过图3-11 可以比较清楚地看到CMS收集器的运作步骤中并发和需要停顿的阶段。

image-20210916174347877

图3-11 Concurrent Mark Sweep收集器运行示意图

CMS是一款优秀的收集器,它最主要的优点在名字上已经体现出来:并发收集、低停顿,一些官方公开文档里面也称之为“并发低停顿收集器”(Concurrent Low Pause Collector)。CMS收集器是HotSpot虚拟机追求低停顿的第一次成功尝试,但是它还远达不到完美的程度,至少有以下三个明显的缺点:

首先,CMS收集器对处理器资源非常敏感。事实上,面向并发设计的程序都对处理器资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但却会因为占用了一部分线程(或者说处理器的计算能力)而导致应用程序变慢,降低总吞吐量。CMS默认启动的回收线程数是(处理器核心数量 +3)/4,也就是说,如果处理器核心数在四个或以上,并发回收时垃圾收集线程只占用不超过25%的处理器运算资源,并且会随着处理器核心数量的增加而下降。但是当处理器核心数量不足四个时, CMS对用户程序的影响就可能变得很大。如果应用本来的处理器负载就很高,还要分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然大幅降低。为了缓解这种情况,虚拟机提供了一种称为“增量式并发收集器”(Incremental Concurrent Mark Sweep/i-CMS)的CMS收集器变种, 所做的事情和以前单核处理器年代PC机操作系统靠抢占式多任务来模拟多核并行多任务的思想一样, 是在并发标记、清理的时候让收集器线程、用户线程交替运行,尽量减少垃圾收集线程的独占资源的时间,这样整个垃圾收集的过程会更长,但对用户程序的影响就会显得较少一些,直观感受是速度变慢的时间更多了,但速度下降幅度就没有那么明显。实践证明增量式的CMS收集器效果很一般,从JDK 7开始,i-CMS模式已经被声明为“deprecated”,即已过时不再提倡用户使用,到JDK 9发布后i- CMS模式被完全废弃。

然后,由于CMS收集器无法处理“浮动垃圾”(Floating Garbage),有可能出现“Con-current Mode Failure”失败进而导致另一次完全“Stop The World”的Full GC的产生。在CMS的并发标记和并发清理阶段,用户线程是还在继续运行的,程序在运行自然就还会伴随有新的垃圾对象不断产生,但这一部分垃圾对象是出现在标记过程结束以后,CMS无法在当次收集中处理掉它们,只好留待下一次垃圾收集时再清理掉。这一部分垃圾就称为“浮动垃圾”。同样也是由于在垃圾收集阶段用户线程还需要持续运行,那就还需要预留足够内存空间提供给用户线程使用,因此CMS收集器不能像其他收集器那样等待到老年代几乎完全被填满了再进行收集,必须预留一部分空间供并发收集时的程序运作使用。在JDK 5的默认设置下,CMS收集器当老年代使用了68%的空间后就会被激活,这是一个偏保守的设置,如果在实际应用中老年代增长并不是太快,可以适当调高参数-XX:CMSInitiatingOccu-pancyFraction的值来提高CMS的触发百分比,降低内存回收频率,获取更好的性能。到了JDK 6时,CMS收集器的启动阈值就已经默认提升至92%。但这又会更容易面临另一种风险:要是CMS运行期间预留的内存无法满足程序分配新对象的需要,就会出现一次“并发失败”(Concurrent Mode Failure),这时候虚拟机将不得不启动后备预案:冻结用户线程的执行,临时启用Serial Old收集器来重新进行老年代的垃圾收集, 但这样停顿时间就很长了。所以参数-XX:CMSInitiatingOccupancyFraction设置得太高将会很容易导致大量的并发失败产生,性能反而降低,用户应在生产环境中根据实际应用情况来权衡设置。

还有最后一个缺点,在本节的开头曾提到,CMS是一款基于“标记-清除”算法实现的收集器,如果读者对前面这部分介绍还有印象的话,就可能想到这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很多剩余空间,但就是无法找到足够大的连续空间来分配当前对象,而不得不提前触发一次Full GC的情况。为了解决这个问题, CMS收集器提供了一个-XX:+UseCMS-CompactAtFullCollection开关参数(默认是开启的,此参数从JDK 9开始废弃),用于在CMS收集器不得不进行Full GC时开启内存碎片的合并整理过程,由于这个内存整理必须移动存活对象,(在Shenandoah和ZGC出现前)是无法并发的。这样空间碎片问题是解决了,但停顿时间又会变长,因此虚拟机设计者们还提供了另外一个参数-XX:CMSFullGCsBefore- Compaction(此参数从JDK 9开始废弃),这个参数的作用是要求CMS收集器在执行过若干次(数量由参数值决定)不整理空间的Full GC之后,下一次进入Full GC前会先进行碎片整理(默认值为0,表示每次进入Full GC时都进行碎片整理)。