8.2.1 局部变量表

8.2.1 局部变量表

局部变量表(Local Variables Table)是一组变量值的存储空间,用于存放方法参数和方法内部定义的局部变量。在Java程序被编译为Class文件时,就在方法的Code属性的max_locals数据项中确定了该方法所需分配的局部变量表的最大容量。

局部变量表的容量以变量槽(Variable Slot)为最小单位,《Java虚拟机规范》中并没有明确指出一个变量槽应占用的内存空间大小,只是很有导向性地说到每个变量槽都应该能存放一个boolean、 byte、char、short、int、float、reference或returnAddress类型的数据,这8种数据类型,都可以使用32位或更小的物理内存来存储,但这种描述与明确指出“每个变量槽应占用32位长度的内存空间”是有本质差别的,它允许变量槽的长度可以随着处理器、操作系统或虚拟机实现的不同而发生变化,保证了即使在64位虚拟机中使用了64位的物理内存空间去实现一个变量槽,虚拟机仍要使用对齐和补白的手段让变量槽在外观上看起来与32位虚拟机中的一致。

image-20211123192952568

图8-1 栈帧的概念结构

既然前面提到了Java虚拟机的数据类型,在此对它们再简单介绍一下。一个变量槽可以存放一个32位以内的数据类型,Java中占用不超过32位存储空间的数据类型有boolean、byte、char、short、int、 float、reference[^1]和returnAddress这8种类型。前面6种不需要多加解释,读者可以按照Java语言中对应数据类型的概念去理解它们(仅是这样理解而已,Java语言和Java虚拟机中的基本数据类型是存在本质差别的),而第7种reference类型表示对一个对象实例的引用,《Java虚拟机规范》既没有说明它的长度,也没有明确指出这种引用应有怎样的结构。但是一般来说,虚拟机实现至少都应当能通过这个引用做到两件事情,一是从根据引用直接或间接地查找到对象在Java堆中的数据存放的起始地址或索引,二是根据引用直接或间接地查找到对象所属数据类型在方法区中的存储的类型信息,否则将无法实现《Java语言规范》中定义的语法约定[^2]。第8种returnAddress类型目前已经很少见了,它是为字节码指令jsr、jsr_w和ret服务的,指向了一条字节码指令的地址,某些很古老的Java虚拟机曾经使用这几条指令来实现异常处理时的跳转,但现在也已经全部改为采用异常表来代替了。

对于64位的数据类型,Java虚拟机会以高位对齐的方式为其分配两个连续的变量槽空间。Java语言中明确的64位的数据类型只有long和double两种。这里把long和double数据类型分割存储的做法与“long 和double的非原子性协定”中允许把一次long和double数据类型读写分割为两次32位读写的做法有些类似,读者阅读到本书关于Java内存模型的内容[^3]时可以进行对比。不过,由于局部变量表是建立在线程堆栈中的,属于线程私有的数据,无论读写两个连续的变量槽是否为原子操作,都不会引起数据竞争和线程安全问题。

Java虚拟机通过索引定位的方式使用局部变量表,索引值的范围是从0开始至局部变量表最大的变 量槽数量。如果访问的是32位数据类型的变量,索引N就代表了使用第N个变量槽,如果访问的是64位 数据类型的变量,则说明会同时使用第N和N+1两个变量槽。对于两个相邻的共同存放一个64位数据 的两个变量槽,虚拟机不允许采用任何方式单独访问其中的某一个,《Java虚拟机规范》中明确要求 了如果遇到进行这种操作的字节码序列,虚拟机就应该在类加载的校验阶段中抛出异常。

当一个方法被调用时,Java虚拟机会使用局部变量表来完成参数值到参数变量列表的传递过程, 即实参到形参的传递。如果执行的是实例方法(没有被static修饰的方法),那局部变量表中第0位索引的变量槽默认是用于传递方法所属对象实例的引用,在方法中可以通过关键字“this”来访问到这个隐含的参数。其余参数则按照参数表顺序排列,占用从1开始的局部变量槽,参数表分配完毕后,再根据方法体内部定义的变量顺序和作用域分配其余的变量槽。

为了尽可能节省栈帧耗用的内存空间,局部变量表中的变量槽是可以重用的,方法体中定义的变量,其作用域并不一定会覆盖整个方法体,如果当前字节码PC计数器的值已经超出了某个变量的作用域,那这个变量对应的变量槽就可以交给其他变量来重用。不过,这样的设计除了节省栈帧空间以外,还会伴随有少量额外的副作用,例如在某些情况下变量槽的复用会直接影响到系统的垃圾收集行为,请看代码清单8-1、代码清单8-2和代码清单8-3的3个演示。

代码清单8-1 局部变量表槽复用对垃圾收集的影响之一
1
2
3
4
public static void main(String[] args)() {
byte[] placeholder = new byte[64 * 1024 * 1024];
System.gc();
}

代码清单8-1中的代码很简单,向内存填充了64MB的数据,然后通知虚拟机进行垃圾收集。我们在虚拟机运行参数中加上“-verbose:gc”来看看垃圾收集的过程,发现在System.gc()运行后并没有回收掉这64MB的内存,下面是运行的结果:

1
2
[GC 66846K->65824K(125632K), 0.0032678 secs] 
[Full GC 65824K->65746K(125632K), 0.0064131 secs]

代码清单8-1的代码没有回收掉placeholder所占的内存是能说得过去,因为在执行System.gc()时, 变量placeholder还处于作用域之内,虚拟机自然不敢回收掉placeholder的内存。那我们把代码修改一下,变成代码清单8-2的样子。

代码清单8-2 局部变量表Slot复用对垃圾收集的影响之二
1
2
3
4
5
6
public static void main(String[] args)() {
{
byte[] placeholder = new byte[64 * 1024 * 1024];
}
System.gc();
}
加入了花括号之后,placeholder的作用域被限制在花括号以内,从代码逻辑上讲,在执行System.gc()的时候,placeholder已经不可能再被访问了,但执行这段程序,会发现运行结果如下,还是有64MB的内存没有被回收掉,这又是为什么呢?
1
2
[GC 66846K->65888K(125632K), 0.0009397 secs] 
[Full GC 65888K->65746K(125632K), 0.0051574 secs]

在解释为什么之前,我们先对这段代码进行第二次修改,在调用System.gc()之前加入一行“int a=0;”,变成代码清单8-3的样子。

代码清单8-3 局部变量表Slot复用对垃圾收集的影响之三
1
2
3
4
5
6
7
public static void main(String[] args)() {
{
byte[] placeholder = new byte[64 * 1024 * 1024];
}
int a = 0;
System.gc();
}

这个修改看起来很莫名其妙,但运行一下程序,却发现这次内存真的被正确回收了:

1
2
[GC 66401K->65778K(125632K), 0.0035471 secs] 
[Full GC 65778K->218K(125632K), 0.0140596 secs]

代码清单8-1至8-3中,placeholder能否被回收的根本原因就是:局部变量表中的变量槽是否还存有关于placeholder数组对象的引用。第一次修改中,代码虽然已经离开了placeholder的作用域,但在此之后,再没有发生过任何对局部变量表的读写操作,placeholder原本所占用的变量槽还没有被其他变量所复用,所以作为GC Roots一部分的局部变量表仍然保持着对它的关联。这种关联没有被及时打断, 绝大部分情况下影响都很轻微。但如果遇到一个方法,其后面的代码有一些耗时很长的操作,而前面又定义了占用了大量内存但实际上已经不会再使用的变量,手动将其设置为null值(用来代替那句inta=0,把变量对应的局部变量槽清空)便不见得是一个绝对无意义的操作,这种操作可以作为一种在极特殊情形(对象占用内存大、此方法的栈帧长时间不能被回收、方法调用次数达不到即时编译器的编译条件)下的“奇技”来使用。Java语言的一本非常著名的书籍《Practical Java》中将把“不使用的对象应手动赋值为null”作为一条推荐的编码规则(笔者并不认同这条规则),但是并没有解释具体原因, 很长时间里都有读者对这条规则感到疑惑。

虽然代码清单8-1至8-3的示例说明了赋null操作在某些极端情况下确实是有用的,但笔者的观点是不应当对赋null值操作有什么特别的依赖,更没有必要把它当作一个普遍的编码规则来推广。原因有两点,从编码角度讲,以恰当的变量作用域来控制变量回收时间才是最优雅的解决方法,如代码清单8-3 那样的场景除了做实验外几乎毫无用处。更关键的是,从执行角度来讲,使用赋null操作来优化内存回收是建立在对字节码执行引擎概念模型的理解之上的,在第6章介绍完字节码之后,笔者在末尾还撰写了一个小结“公有设计、私有实现”(6.5节)来强调概念模型与实际执行过程是外部看起来等效,内部看上去则可以完全不同。当虚拟机使用解释器执行时,通常与概念模型还会比较接近,但经过即时编译器施加了各种编译优化措施以后,两者的差异就会非常大,只保证程序执行的结果与概念一致。在实际情况中,即时编译才是虚拟机执行代码的主要方式,赋null值的操作在经过即时编译优化后几乎是一定会被当作无效操作消除掉的,这时候将变量设置为null就是毫无意义的行为。字节码被即时编译为本地代码后,对GC Roots的枚举也与解释执行时期有显著差别,以前面的例子来看,经过第一次修改的代码清单8-2在经过即时编译后,System.gc()执行时就可以正确地回收内存,根本无须写成代码清单8-3的样子。

关于局部变量表,还有一点可能会对实际开发产生影响,就是局部变量不像前面介绍的类变量那样存在“准备阶段”。通过第7章的学习,我们已经知道类的字段变量有两次赋初始值的过程,一次在准备阶段,赋予系统初始值;另外一次在初始化阶段,赋予程序员定义的初始值。因此即使在初始化阶段程序员没有为类变量赋值也没有关系,类变量仍然具有一个确定的初始值,不会产生歧义。但局部变量就不一样了,如果一个局部变量定义了但没有赋初始值,那它是完全不能使用的。所以不要认为Java中任何情况下都存在诸如整型变量默认为0、布尔型变量默认为false等这样的默认值规则。如代码清单8-4所示,这段代码在Java中其实并不能运行(但是在其他语言,譬如C和C++中类似的代码是可以运行的),所幸编译器能在编译期间就检查到并提示出这一点,即便编译能通过或者手动生成字节码的方式制造出下面代码的效果,字节码校验的时候也会被虚拟机发现而导致类加载失败。

代码清单8-4 未赋值的局部变量
1
2
3
4
public static void main(String[] args) {
int a;
System.out.println(a);
}

[^1]: Java虚拟机规范中没有明确规定reference类型的长度,它的长度与实际使用32位还是64位虚拟机有 关,如果是64位虚拟机,还与是否开启某些对象指针压缩的优化有关,这里我们暂且只取32位虚拟机 的reference长度。
[^2]: 并不是所有语言的对象引用都能满足这两点,例如C++语言,默认情况下(不开启RTTI支持的情 况),就只能满足第一点,而不满足第二点。这也是为何C++中无法提供Java语言里很常见的反射的 根本原因。
[^3]: 这是Java内存模型中定义的内容,关于原子操作与“long和double的非原子性协定”等问题,将在本书
第12章中做详细讲解。