17.3 装饰模式应用

17.3.1 装饰模式的优点

  • 装饰类和被装饰类可以独立发展,而不会相互耦合。换句话说,Component类无须知道Decorator类,Decorator类是从外部来扩展Component类的功能,而Decorator也不用知道具体的构件。
  • 装饰模式是继承关系的一个替代方案。我们看装饰类Decorator,不管装饰多少层,返回的对象还是Component,实现的还是is-a的关系。
  • 装饰模式可以动态地扩展一个实现类的功能,这不需要多说,装饰模式的定义就是如此。

17.3.2 装饰模式的缺点

对于装饰模式记住一点就足够了:多层的装饰是比较复杂的。为什么会复杂呢?你想想看,就像剥洋葱一样,你剥到了最后才发现是最里层的装饰出现了问题,想象一下工作量吧,因此,尽量减少装饰类的数量,以便降低系统的复杂度。

17.3.3 装饰模式的使用场景

  • 需要扩展一个类的功能,或给一个类增加附加功能。
  • 需要动态地给一个对象增加功能,这些功能可以再动态地撤销。
  • 需要为一批的兄弟类进行改装或加装功能,当然是首选装饰模式。

16.4 最佳实践

在例子和通用源码中Handler是抽象类,融合了模板方法模式,每个实现类只要实现两个方法:echo方法处理请求和getHandlerLevel获得处理级别,想想单一职责原则和迪米特法则吧,通过融合模板方法模式,各个实现类只要关注的自己业务逻辑就成了,至于说什么事要自己处理,那就让父类去决定好了,也就是说父类实现了请求传递的功能,子类实现请求的处理,符合单一职责原则,各个实现类只完成一个动作或逻辑,也就是只有一个原因引起类的改变,我建议大家在使用的时候用这种方法,好处是非常明显的了,子类的实现非常简单,责任链的建立也是非常灵活的。

责任链模式屏蔽了请求的处理过程,你发起一个请求到底是谁处理的,这个你不用关心,只要你把请求抛给责任链的第一个处理者,最终会返回一个处理结果(当然也可以不做任何处理),作为请求者可以不用知道到底是需要谁来处理的,这是责任链模式的核心,同时责任链模式也可以作为一种补救模式来使用。举个简单例子,如项目开发的时候,需求确认是这样的:一个请求(如银行客户存款的币种),一个处理者(只处理人民币),但是随着业务的发展(改革开放了嘛,还要处理美元、日元等),处理者的数量和类型都有所增加,那这时候就可以在第一个处理者后面建立一个链,也就是责任链来处理请求,如果是人民币,好,还是第一个业务逻辑来处理;如果是美元,好,传递到第二个业务逻辑来处理; 日元、欧元……这些都不用在对原有的业务逻辑产生很大改变,通过扩展实现类就可以很好地解决这些需求变更的问题。

责任链在实际的项目中使用也是比较多的,我曾经做过这样一个项目,界面上有一个用户注册功能,注册用户分两种,一种是VIP用户,也就是在该单位办理过业务的,一种是普通用户,一个用户的注册要填写一堆信息,VIP用户只比普通用户多了一个输入项:VIP序列号。注册后还需要激活,VIP和普通用户的激活流程也是不同的,VIP是自动发送邮件到用户的邮箱中就算激活了,普通用户要发送短信才能激活,为什么呢?获得手机号码以后好发广告短信啊!项目组就采用了责任链模式,甭管从前台传递过来的是VIP用户信息还是普通用户信息,统一传递到一个处理入口,通过责任链来完成任务的处理,类图如图16-5所示。

image-20210929114024790

图16-5 用户注册类图

其中RegisterAction是继承了Strust2中的ActionSupport,实现HTTP传递过来对象组装,组装出一个HashMap对象UserInfoMap,传递给Handler的两个实现类,具体是哪个实现类来处理的,就由HashMap上的用户标识来做决定了,这个和上面我们举的例子很类似,读者可以自行实现。

16.3 责任链模式的应用

16.3.1 责任链模式的优点

责任链模式非常显著的优点是将请求和处理分开。请求者可以不用知道是谁处理的,处理者可以不用知道请求的全貌(例如在J2EE项目开发中,可以剥离出无状态Bean由责任链处理),两者解耦,提高系统的灵活性。

16.3.2 责任链模式的缺点

责任链有两个非常显著的缺点:一是性能问题,每个请求都是从链头遍历到链尾,特别是在链比较长的时候,性能是一个非常大的问题。二是调试不很方便,特别是链条比较长, 环节比较多的时候,由于采用了类似递归的方式,调试的时候逻辑可能比较复杂。

16.3.3 责任链模式的注意事项

链中节点数量需要控制,避免出现超长链的情况,一般的做法是在Handler中设置一个最大节点数量,在setNext方法中判断是否已经是超过其阈值,超过则不允许该链建立,避免无意识地破坏系统性能。

14.4 中介者模式的实际应用

中介者模式也叫做调停者模式,是什么意思呢?一个对象要和N多个对象交流,就像对象间的战争,很混乱。这时,需要加入一个中心,所有的类都和中心交流,中心说怎么处理就怎么处理,我们举一些在开发和生活中经常会碰到的例子。

  • 机场调度中心

大家在每个机场都会看到有一个“××机场调度中心”,它就是具体的中介者,用来调度每一架要降落和起飞的飞机。比如,某架飞机(同事类)飞到机场上空了,就询问调度中心 (中介者)“我是否可以降落”以及“降落到哪个跑道”,调度中心(中介者)查看其他飞机 (同事类)情况,然后通知飞机降落。如果没有机场调度中心,飞机飞到机场了,飞行员要先看看有没有飞机和自己一起降落的,有没有空跑道,停机位是否具备等情况,这种局面是难以想象的!

  • MVC框架

大家都应该使用过Struts,MVC框架,其中的C(Controller)就是一个中介者,叫做前端控制器(Front Controller),它的作用就是把M(Model,业务逻辑)和V(View,视图)隔离开, 协调M和V协同工作,把M运行的结果和V代表的视图融合成一个前端可以展示的页面,减少M和V的依赖关系。MVC框架已经成为一个非常流行、成熟的开发框架,这也是中介者模式的优点的一个体现。

  • 媒体网关

媒体网关也是一个典型的中介者模式,比如使用MSN时,张三发消息给李四,其过程应该是这样的:张三发送消息,MSN服务器(中介者)接收到消息,查找李四,把消息发送到李四,同时通知张三,消息已经发送。在这里,MSN服务器就是一个中转站,负责协调两个客户端的信息交流,与此相反的就是IPMsg(也叫飞鸽),它没有使用中介者,而直接使用了UDP广播的方式,每个客户端既是客户端也是服务器端。

  • 中介服务

现在中介服务非常多,比如租房中介、出国中介,这些也都是中介模式的具体体现,比如你去租房子,如果没有房屋中介,你就必须一个一个小区去找,看看有没有空房子,有没有适合自己的房子,找到房子后还要和房东签合约,自己检查房屋的家具、水电煤等;有了中介后,你就省心多了,找中介,然后安排看房子,看中了,签合约,中介帮你检查房屋家具、水电煤等等。这也是中介模式的实际应用。

14.5 最佳实践

本章讲述的中介者模式很少用到接口或者抽象类,这与依赖倒置原则是冲突的,这是什么原因呢?首先,既然是同事类而不是兄弟类(有相同的血缘),那就说明这些类之间是协作关系,完成不同的任务,处理不同的业务,所以不能在抽象类或接口中严格定义同事类必须具有的方法(从这点也可以看出继承是高侵入性的)。这是不合适的,就像你我是同事, 虽然我们大家都是朝九晚五地上班,但是你跟我干的活肯定不同,不可能抽象出一个父类统一定义同事所必须有的方法。当然,每个同事都要吃饭、上厕所,可以把这些最基本的信息封装到抽象中,但这些最基本的行为或属性是中介者模式要关心的吗?如果两个对象不能提炼出共性,那就不要刻意去追求两者的抽象,抽象只要定义出模式需要的角色即可。当然如果严格遵守面向接口编程的话,则是需要抽象的,这就需要读者在实际开发中灵活掌握。其次,在一个项目中,中介者模式可能被多个模块采用,每个中介者所围绕的同事类各不相同,你能抽象出一个具有共性的中介者吗?不可能,一个中介者抽象类一般只有一个实现者,除非中介者逻辑非常复杂,代码量非常大,这时才会出现多个中介者的情况。所以,对于中介者来说,抽象已经没有太多的必要。

中介者模式是一个非常好的封装模式,也是一个很容易被滥用的模式,一个对象依赖几个对象是再正常不过的事情,但是纯理论家就会要求使用中介者模式来封装这种依赖关系, 这是非常危险的!使用中介模式就必然会带来中介者的膨胀问题,这在一个项目中是很不恰当的。大家可以在如下的情况下尝试使用中介者模式:

  • N个对象之间产生了相互的依赖关系(N>2)。
  • 多个对象有依赖关系,但是依赖的行为尚不确定或者有发生改变的可能,在这种情况下一般建议采用中介者模式,降低变更引起的风险扩散。
  • 产品开发。一个明显的例子就是MVC框架,把中介者模式应用到产品中,可以提升产品的性能和扩展性,但是对于项目开发就未必,因为项目是以交付投产为目标,而产品则是以稳定、高效、扩展为宗旨。

14.3 中介者模式的应用

14.3.1 中介者模式的优点

中介者模式的优点就是减少类间的依赖,把原有的一对多的依赖变成了一对一的依赖, 同事类只依赖中介者,减少了依赖,当然同时也降低了类间的耦合。

14.3.2 中介者模式的缺点

中介者模式的缺点就是中介者会膨胀得很大,而且逻辑复杂,原本N个对象直接的相互依赖关系转换为中介者和同事类的依赖关系,同事类越多,中介者的逻辑就越复杂。

14.3.3 中介者模式的使用场景

中介者模式简单,但是简单不代表容易使用,很容易被误用。在面向对象的编程中,对象和对象之间必然会有依赖关系,如果某个类和其他类没有任何相互依赖的关系,那这个类就是一个“孤岛”,在项目中就没有存在的必要了!就像是某个人如果永远独立生活,与任何人都没有关系,那这个人基本上就算是野人了——排除在人类这个定义之外。

类之间的依赖关系是必然存在的,一个类依赖多个类的情况也是存在的,存在即合理, 那是否可以说只要有多个依赖关系就考虑使用中介者模式呢?答案是否定的。中介者模式未必能帮你把原本凌乱的逻辑整理得清清楚楚,而且中介者模式也是有缺点的,这个缺点在使用不当时会被放大,比如原本就简单的几个对象依赖关系,如果为了使用模式而加入了中介者,必然导致中介者的逻辑复杂化,因此中介者模式的使用需要“量力而行”!中介者模式适用于多个对象之间紧密耦合的情况,紧密耦合的标准是:在类图中出现了蜘蛛网状结构。在这种情况下一定要考虑使用中介者模式,这有利于把蜘蛛网梳理为星型结构,使原本复杂混乱的关系变得清晰简单。

13.5 最佳实践

原型模式先产生出一个包含大量共有信息的类,然后可以拷贝出副本,修正细节信息, 建立了一个完整的个性对象。不知道大家有没有看过施瓦辛格演的《第六日》这部电影,电影的主线也就是一个人被复制,然后正本和副本对掐。我们今天讲的原型模式也就是由一个正本可以创建多个副本的概念。可以这样理解:一个对象的产生可以不由零起步,直接从一个已经具备一定雏形的对象克隆,然后再修改为生产需要的对象。也就是说,产生一个人, 可以不从1岁长到2岁,再到3岁……也可以直接找一个人,从其身上获得DNA,然后克隆一个,直接修改一下就是30岁了!我们讲的原型模式也就是这样的功能。

13.4 原型模式的注意事项

原型模式虽然很简单,但是在Java中使用原型模式也就是clone方法还是有一些注意事项的,我们通过几个例子逐个解说。

13.4.1 构造函数不会被执行

一个实现了Cloneable并重写了clone方法的类A,有一个无参构造或有参构造B,通过new关键字产生了一个对象S,再然后通过S.clone()方式产生了一个新的对象T,那么在对象拷贝时构造函数B是不会被执行的。我们来写一小段程序来说明这个问题,如代码清单13-8 所示。

代码清单13-8 简单的可拷贝对象

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public class Thing implements Cloneable{
public Thing(){
System.out.println("构造函数被执行了...");
}
@Override
public Thing clone(){
Thing thing=null;
try {
thing = (Thing)super.clone();
}
catch (CloneNotSupportedException e) {
e.printStackTrace();
}
return thing;
}
}

然后我们再来写一个Client类,进行对象的拷贝,如代码清单13-9所示。

代码清单13-9 简单的场景类

1
2
3
4
5
6
7
8
public class Client {
public static void main(String[] args) {
//产生一个对象
Thing thing = new Thing();
//拷贝一个对象
Thing cloneThing = thing.clone();
}
}

运行结果如下所示:

1
构造函数被执行了...

对象拷贝时构造函数确实没有被执行,这点从原理来讲也是可以讲得通的,Object类的clone方法的原理是从内存中(具体地说就是堆内存)以二进制流的方式进行拷贝,重新分配一个内存块,那构造函数没有被执行也是非常正常的了。

13.4.2 浅拷贝和深拷贝

在解释什么是浅拷贝和什么是深拷贝之前,我们先来看个例子,如代码清单13-10所示。

代码清单13-10 浅拷贝

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
public class Thing implements Cloneable{
//定义一个私有变量
private ArrayList<String> arrayList = new ArrayList<String>();
@Override
public Thing clone(){
Thing thing=null;
try {
thing = (Thing)super.clone();
}
catch (CloneNotSupportedException e) {
e.printStackTrace();
}
return thing;
}
//设置HashMap的值
public void setValue(String value){
this.arrayList.add(value);
}
//取得arrayList的值
public ArrayList<String> getValue(){
return this.arrayList;
}
}

c

1
2
3
4
5
6
7
8
9
10
11
12
public class Client {
public static void main(String[] args) {
//产生一个对象
Thing thing = new Thing();
//设置一个值
thing.setValue("张三");
//拷贝一个对象
Thing cloneThing = thing.clone();
cloneThing.setValue("李四");
System.out.println(thing.getValue());
}
}

猜想一下运行结果应该是什么?是仅一个“张三”吗?运行结果如下所示:

1
[张三,李四]

怎么会这样呢?怎么会有李四呢?是因为Java做了一个偷懒的拷贝动作,Object类提供的方法clone只是拷贝本对象,其对象内部的数组、引用对象等都不拷贝,还是指向原生对象的内部元素地址,这种拷贝就叫做浅拷贝。确实是非常浅,两个对象共享了一个私有变量, 你改我改大家都能改,是一种非常不安全的方式,在实际项目中使用还是比较少的(当然, 这也是一种“危机”环境的一种救命方式)。你可能会比较奇怪,为什么在Mail那个类中就可以使用String类型,而不会产生由浅拷贝带来的问题呢?内部的数组和引用对象才不拷贝, 其他的原始类型比如int、long、char等都会被拷贝,但是对于String类型,Java就希望你把它认为是基本类型,它是没有clone方法的,处理机制也比较特殊,通过字符串池(stringpool) 在需要的时候才在内存中创建新的字符串,读者在使用的时候就把String当做基本类使用即可。


注意 使用原型模式时,引用的成员变量必须满足两个条件才不会被拷贝:一是类的成员变量,而不是方法内变量;二是必须是一个可变的引用对象,而不是一个原始类型或不可变对象


浅拷贝是有风险的,那怎么才能深入地拷贝呢?我们修改一下程序就可以深拷贝,如代码清单13-12所示。

代码清单13-12 深拷贝

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public class Thing implements Cloneable{
//定义一个私有变量
private ArrayList<String> arrayList = new ArrayList<String>();
@Override
public Thing clone(){
Thing thing=null;
try {
thing = (Thing)super.clone();
thing.arrayList = (ArrayList<String>)this.arrayList.clone();
}
catch (CloneNotSupportedException e) {
e.printStackTrace();
}
return thing;
}
}

仅仅增加了粗体部分,对私有的类变量进行独立的拷贝。Client类没有任何改变,运行结果如下所示:

1
[张三]

该方法就实现了完全的拷贝,两个对象之间没有任何的瓜葛了,你修改你的,我修改我的,不相互影响,这种拷贝就叫做深拷贝。深拷贝还有一种实现方式就是通过自己写二进制流来操作对象,然后实现对象的深拷贝,这个大家有时间自己实现一下。


注意 深拷贝和浅拷贝建议不要混合使用,特别是在涉及类的继承时,父类有多个引用的情况就非常复杂,建议的方案是深拷贝和浅拷贝分开实现。


13.4.3 clone与final两个冤家

对象的clone与对象内的final关键字是有冲突的,我们举例来说明这个问题,如代码清单13-13所示。

代码清单13-13 增加final关键字的拷贝

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class Thing implements Cloneable{
//定义一个私有变量
private final ArrayList<String> arrayList = new ArrayList<String>();
@Override public Thing clone(){
Thing thing=null;
try {
thing = (Thing)super.clone();
this.arrayList = (ArrayList<String>)this.arrayList.clone();
}
catch (CloneNotSupportedException e) {
e.printStackTrace();
}
return thing;
}
}

粗体部分仅仅增加了一个final关键字,然后编译器就报斜体部分错误,正常呀,final类型你还想重赋值呀!你要实现深拷贝的梦想在final关键字的威胁下破灭了,路总是有的,我们来想想怎么修改这个方法:删除掉final关键字,这是最便捷、安全、快速的方式。你要使用clone方法,在类的成员变量上就不要增加final关键字。

注意 要使用clone方法,类的成员变量上不要增加final关键字。


注意 要使用clone方法,类的成员变量上不要增加final关键字。


13.3 原型模式的应用

13.3.1 原型模式的优点

  • 性能优良

原型模式是在内存二进制流的拷贝,要比直接new一个对象性能好很多,特别是要在一个循环体内产生大量的对象时,原型模式可以更好地体现其优点。

  • 逃避构造函数的约束

这既是它的优点也是缺点,直接在内存中拷贝,构造函数是不会执行的(参见13.4 节)。优点就是减少了约束,缺点也是减少了约束,需要大家在实际应用时考虑。

13.3.2 原型模式的使用场景

  • 资源优化场景

类初始化需要消化非常多的资源,这个资源包括数据、硬件资源等。

  • 性能和安全要求的场景

通过new产生一个对象需要非常繁琐的数据准备或访问权限,则可以使用原型模式。

  • 一个对象多个修改者的场景

一个对象需要提供给其他对象访问,而且各个调用者可能都需要修改其值时,可以考虑使用原型模式拷贝多个对象供调用者使用。

在实际项目中,原型模式很少单独出现,一般是和工厂方法模式一起出现,通过clone的方法创建一个对象,然后由工厂方法提供给调用者。原型模式已经与Java融为一体,大家可以随手拿来使用。

12.5 最佳实践

代理模式应用得非常广泛,大到一个系统框架、企业平台,小到代码片段、事务处理, 稍不留意就用到代理模式。可能该模式是大家接触最多的模式,而且有了AOP大家写代理就更加简单了,有类似Spring AOP和AspectJ这样非常优秀的工具,拿来主义即可!不过,大家可以看看源代码,特别是调试时,只要看到类似$Proxy0这样的结构,你就应该知道这是一个动态代理了。

友情提醒,在学习AOP框架时,弄清楚几个名词就成:切面(Aspect)、切入点 (JoinPoint)、通知(Advice)、织入(Weave)就足够了,理解了这几个名词,应用时你就可以游刃有余了!