7.3.2 验证_7.3 类加载的过程

7.3.2 验证

验证是连接阶段的第一步,这一阶段的目的是确保Class文件的字节流中包含的信息符合《Java虚拟机规范》的全部约束要求,保证这些信息被当作代码运行后不会危害虚拟机自身的安全。

Java语言本身是相对安全的编程语言(起码对于C/C++来说是相对安全的),使用纯粹的Java代码无法做到诸如访问数组边界以外的数据、将一个对象转型为它并未实现的类型、跳转到不存在的代码行之类的事情,如果尝试这样去做了,编译器会毫不留情地抛出异常、拒绝编译。但前面也曾说过, Class文件并不一定只能由Java源码编译而来,它可以使用包括靠键盘0和1直接在二进制编辑器中敲出Class文件在内的任何途径产生。上述Java代码无法做到的事情在字节码层面上都是可以实现的,至少语义上是可以表达出来的。Java虚拟机如果不检查输入的字节流,对其完全信任的话,很可能会因为载入了有错误或有恶意企图的字节码流而导致整个系统受攻击甚至崩溃,所以验证字节码是Java虚拟机保护自身的一项必要措施。

验证阶段是非常重要的,这个阶段是否严谨,直接决定了Java虚拟机是否能承受恶意代码的攻击,从代码量和耗费的执行性能的角度上讲,验证阶段的工作量在虚拟机的类加载过程中占了相当大的比重。但是《Java虚拟机规范》的早期版本(第1、2版)对这个阶段的检验指导是相当模糊和笼统的,规范中仅列举了一些对Class文件格式的静态和结构化的约束,要求虚拟机验证到输入的字节流如不符合Class文件格式的约束,就应当抛出一个java.lang.VerifyError异常或其子类异常,但具体应当检查哪些内容、如何检查、何时进行检查等,都没有足够具体的要求和明确的说明。直到2011年《Java虚拟机规范(Java SE 7版)》出版,规范中大幅增加了验证过程的描述(篇幅从不到10页增加到130 页),这时验证阶段的约束和验证规则才变得具体起来。受篇幅所限,本书中无法逐条规则去讲解, 但从整体上看,验证阶段大致上会完成下面四个阶段的检验动作:文件格式验证、元数据验证、字节码验证和符号引用验证。

1.文件格式验证

第一阶段要验证字节流是否符合Class文件格式的规范,并且能被当前版本的虚拟机处理。这一阶段可能包括下面这些验证点:

  • 是否以魔数0xCAFEBABE开头。
  • 主、次版本号是否在当前Java虚拟机接受范围之内。
  • 常量池的常量中是否有不被支持的常量类型(检查常量tag标志)。
  • 指向常量的各种索引值中是否有指向不存在的常量或不符合类型的常量。
  • CONSTANT_Utf8_info型的常量中是否有不符合UTF-8编码的数据。
  • Class文件中各个部分及文件本身是否有被删除的或附加的其他信息。
  • ……

实际上第一阶段的验证点还远不止这些,上面所列的只是从HotSpot虚拟机源码[^1]中摘抄的一小部分内容,该验证阶段的主要目的是保证输入的字节流能正确地解析并存储于方法区之内,格式上符合描述一个Java类型信息的要求。这阶段的验证是基于二进制字节流进行的,只有通过了这个阶段的验证之后,这段字节流才被允许进入Java虚拟机内存的方法区中进行存储,所以后面的三个验证阶段全部是基于方法区的存储结构上进行的,不会再直接读取、操作字节流了。

2.元数据验证

第二阶段是对字节码描述的信息进行语义分析,以保证其描述的信息符合《Java语言规范》的要求,这个阶段可能包括的验证点如下:

  • 这个类是否有父类(除了java.lang.Object之外,所有的类都应当有父类)。
  • 这个类的父类是否继承了不允许被继承的类(被final修饰的类)。
  • 如果这个类不是抽象类,是否实现了其父类或接口之中要求实现的所有方法。
  • 类中的字段、方法是否与父类产生矛盾(例如覆盖了父类的final字段,或者出现不符合规则的方法重载,例如方法参数都一致,但返回值类型却不同等)。
  • ……

第二阶段的主要目的是对类的元数据信息进行语义校验,保证不存在与《Java语言规范》定义相悖的元数据信息。

3.字节码验证

第三阶段是整个验证过程中最复杂的一个阶段,主要目的是通过数据流分析和控制流分析,确定程序语义是合法的、符合逻辑的。在第二阶段对元数据信息中的数据类型校验完毕以后,这阶段就要对类的方法体(Class文件中的Code属性)进行校验分析,保证被校验类的方法在运行时不会做出危害虚拟机安全的行为,例如:

  • 保证任意时刻操作数栈的数据类型与指令代码序列都能配合工作,例如不会出现类似于“在操作栈放置了一个int类型的数据,使用时却按long类型来加载入本地变量表中”这样的情况。
  • 保证任何跳转指令都不会跳转到方法体以外的字节码指令上。
  • 保证方法体中的类型转换总是有效的,例如可以把一个子类对象赋值给父类数据类型,这是安全的,但是把父类对象赋值给子类数据类型,甚至把对象赋值给与它毫无继承关系、完全不相干的一个数据类型,则是危险和不合法的。
  • ……

如果一个类型中有方法体的字节码没有通过字节码验证,那它肯定是有问题的;但如果一个方法体通过了字节码验证,也仍然不能保证它一定就是安全的。即使字节码验证阶段中进行了再大量、再严密的检查,也依然不能保证这一点。这里涉及了离散数学中一个很著名的问题——“停机问题”(Halting Problem)[^2],即不能通过程序准确地检查出程序是否能在有限的时间之内结束运行。在我们讨论字节码校验的上下文语境里,通俗一点的解释是通过程序去校验程序逻辑是无法做到绝对准确的,不可能用程序来准确判定一段程序是否存在Bug。

由于数据流分析和控制流分析的高度复杂性,Java虚拟机的设计团队为了避免过多的执行时间消耗在字节码验证阶段中,在JDK 6之后的Javac编译器和Java虚拟机里进行了一项联合优化,把尽可能多的校验辅助措施挪到Javac编译器里进行。具体做法是给方法体Code属性的属性表中新增加了一项名为“StackMapTable”的新属性,这项属性描述了方法体所有的基本块(Basic Block,指按照控制流拆分的代码块)开始时本地变量表和操作栈应有的状态,在字节码验证期间,Java虚拟机就不需要根据程序推导这些状态的合法性,只需要检查StackMapTable属性中的记录是否合法即可。这样就将字节码验证的类型推导转变为类型检查,从而节省了大量校验时间。理论上StackMapTable属性也存在错误或被篡改的可能,所以是否有可能在恶意篡改了Code属性的同时,也生成相应的StackMapTable属性来骗过虚拟机的类型校验,则是虚拟机设计者们需要仔细思考的问题。

JDK 6的HotSpot虚拟机中提供了-XX:-UseSplitVerifier选项来关闭掉这项优化,或者使用参数- XX:+FailOverToOldVerifier要求在类型校验失败的时候退回到旧的类型推导方式进行校验。而到了JDK 7之后,尽管虚拟机中仍然保留着类型推导验证器的代码,但是对于主版本号大于50(对应JDK 6)的Class文件,使用类型检查来完成数据流分析校验则是唯一的选择,不允许再退回到原来的类型推导的校验方式。

4.符号引用验证

最后一个阶段的校验行为发生在虚拟机将符号引用转化为直接引用[^3]的时候,这个转化动作将在连接的第三阶段——解析阶段中发生。符号引用验证可以看作是对类自身以外(常量池中的各种符号引用)的各类信息进行匹配性校验,通俗来说就是,该类是否缺少或者被禁止访问它依赖的某些外部类、方法、字段等资源。本阶段通常需要校验下列内容:

  • 符号引用中通过字符串描述的全限定名是否能找到对应的类。
  • 在指定类中是否存在符合方法的字段描述符及简单名称所描述的方法和字段。
  • 符号引用中的类、字段、方法的可访问性(private、protected、public、)是否可被当前类访问。
  • ……

符号引用验证的主要目的是确保解析行为能正常执行,如果无法通过符号引用验证,Java虚拟机将会抛出一个java.lang.IncompatibleClassChangeError的子类异常,典型的如: java.lang.IllegalAccessError、java.lang.NoSuchFieldError、java.lang.NoSuchMethodError等。

验证阶段对于虚拟机的类加载机制来说,是一个非常重要的、但却不是必须要执行的阶段,因为验证阶段只有通过或者不通过的差别,只要通过了验证,其后就对程序运行期没有任何影响了。如果程序运行的全部代码(包括自己编写的、第三方包中的、从外部加载的、动态生成的等所有代码)都已经被反复使用和验证过,在生产环境的实施阶段就可以考虑使用-Xverify:none参数来关闭大部分的类验证措施,以缩短虚拟机类加载的时间。

[^1]: JDK 12源码中的位置:src\hotspot\share\classfile\classFileParser.cpp。
[^2]: 停机问题就是判断任意一个程序是否会在有限的时间之内结束运行的问题。如果这个问题可以在有 限的时间之内解决,可以有一个程序判断其本身是否会停机并做出相反的行为。这时候显然不管停机 问题的结果是什么都不会符合要求,所以这是一个不可解的问题。具体的证明过程可参考链接 http://zh.wikipedia.org/zh/停机问题。
[^3]: 关于符号引用和直接引用的具体解释,见7.3.4节。